Simulator Sickness에 의해 유발되는 생리적 변화가 감성평가에 미치는 영향

Effects of Physiological Changes Evoked by Simulator Sickness on Sensibility Evaluation

민병천** • 정순철*** • 성은정** • 전호정** • 김철중**
Byung-Chan Min** • Soon-Cheol Chang*** • Eun-Jung Sung** • Hyo-Jeong Jeon** • Chul-Jung Kim**
** Ergonomics and Information Lab, Korea Research Institute of Standards and Science
*** Department of Biomedical Engineering College of Medicine, KonKuk University

Abstract: Psychological and physiological effects from simulator sickness could be an important bias factor for sensibility evaluation. The present experiment investigated the effects of simulator sickness on sensibility evaluation in the controlled condition of driving a car for 60 minutes on a constant speed (60km/h) in graphic simulator. The simulator sickness was measured and analysed for every five minutes using their subjective evaluation and physiological signals. Results of the subjective evaluation showed that there was significant difference between rest and driving condition at 10 minutes from the start of driving, and the level of difference was increased linearly with time. The analysis on central and autonomic nervous systems showed the significant difference between rest and driving conditions after 5 minutes from the start of the driving on the parameters α/total and β/total, and increased level of sympathetic nervous system. But there was no significant difference between different time conditions. The results indicates that physiological changes from simulator sickness can be a bias factor in objective evaluation of human sensibility which also, uses physiological signals. That is, the changes on the parameter α/total and β/total, and on activation level of sympathetic nervous system from simulator sickness can be a bias factor for evaluation of the level of pleasantness and tension. Therefore the effort on improving the analysis by minimizing or eliminating the bias factors should be done for better and accurate sensibility evaluation in simulator environments.

Key word: Simulator Sickness, Sensibility Evaluation, Physiological change, Graphic Simulator,

요약: Simulator Sickness에 의한 심리적, 생리적 영향은 시뮬레이터 이용한 감성 자극 및 평가 연구에 큰 영향 요소로 작용할 수 있다. 그러므로 본 연구는 자동차 Graphic Simulator에서 일정한 속도(60km/h)로 60분간 주행하면서 나타나는 피험자의 Simulator Sickness의 변화를 5분간의 시간 간격으로 주관적 평가와 생리신호를 통해 살펴봄으로써, Simulator Sickness가 감성 평가에 어떤 영향을 미칠 수 있는지에 대해서 논의하였다. 주관적인 Simulator Sickness 평가 결과는 10분 이후부터 안정이 빠르게 통계적 유의가 나타났고 시간이 지남에 따라 선형적으로 증가하였다. 수주 및 자율 신경계의 생리 신호의 결과는 안정에 비해 5분 이후부터 α/total와 β/total의 감소와 교감신경계의 활성화를 유발하였지만, 5분 이후부터는 시간에 따른 특정 변화를 발견할 수 없었다. 본 연구로부터 Simulator Sickness로 유발되는 생리 변화는 생리 신호를 이용한 객관적 감성 판단에 있어 외상요소로 작용할 소지가 큰 것으로 판단되었다. 즉, Simulator Sickness에 의해 유발되는 α/total와 β/total의 뇌 변화와 교감 신경계의 활성화는 해당 및 긴장도를 판단하는데 외상 요소로 작용할 수 있을 것이다. 그리므로 향후 Simulator상에서 정확한 감성 판단을 위해서는 이러한 외상 요소를 최소화 내지 제거할 수 있는 방법을 개발하여야만 할 것으로 사료된다.

주요어: 감성평가, 생리변화, Graphic Simulator
1. 서론

인간의 감성은 의료로부터의 감각정보에 대하여 직관적이고 순차적으로 발생되며 개인적으로 시간과 환경 변화에 따라 다양하게 변화한다. 지금까지 인간의 감성을 평가하기 위해서 실수지를 이용한 주관적인 평가가 의료로부터의 감각 정보에 대해 발생되는 생리적 변화를 측정하는 객관적인 평가가 이용되었다. Davidson과 Fox는 10개월 된 유아들이 각각 습관과 기법을 연기 하는 배우의 비디오 데모를 보는 동안 뇌파를 측정하여 분석한 결과, 뇌파의 편측성(EEG asymmetry)이 일어난다는 것을 발견하였다[1]. 뇌파 집단(기능적)은 전 두엽에서 더 많은 좌반구 활성화를 일으키며, 두엽엽 부분에서는 좌우반구의 차이를 보지 않았다. Ryoko 등은 경우 제한 항을 제시했을 때 뇌의 2차 (temporal) 부분과 두엽엽(parietal) 부분에서 a 대역 전력의 유의하게 증가를 보고하였다[2]. Peter 등은 제한 항으로 Phenylethyl alcohol이 자극적 태극에 대한 반응에 비해 뇌의 전 부분에서 a, b 대역 전력이 증가하고 불안한 향신 valeric acid이 자극적 태극에 비해 a, b 대역 전력의 더 큰 증가를 보고하였다[3]. 이외에도 EEG 측정을 통한 인간의 정서 혹은 감성에 대한 연구가 잦게 증가하고 있다[4, 5]. Elliot은 위험이나 분노가 유발된 상황에서 심박동이 증가한다는 보고하였다[6]. Ekman 등은 다양한 정서의 얼굴 표정을 자극에 대항으로 심박동을 측정한 결과도 존재한다. Levenson 등은 정서적 정서적 긴장성 사이에 관련도가 존재한다고 보고하였다[7]. 이와 같이 실험실에서의 정서 혹은 감성 유발은 노이즈 없는 감성 생리적 데이터를 제공하는 대에 중요한 역할을 하므로 지금까지는 연구가의 실험 목적이 맞도록 자극을 유발하기 위해 제한된 실험실에서 연구가 수행되어 왔다. 근데에는 이러한 정서적 환경에서의 결과를 기반으로 해서 온전한 능력에 영향을 미치는 파라미터 추출 연구, 운전 중 피로도 조사, 작업 부하에 따른 운전자 피로도 연구, 동적 환경에서의 생리 신호를 이용한 연구가 활발히 진행되고 있다[1, 2]. 이와 더불어 본격적으로 동적 환경에서 인간의 감성을 평가하기 위해 자동차 속도를 변화시키면서 속도 증가에 따른 진단의 변화를 자율신경계의 분석으로부터 추출하고자 하는 연구[3, 4]가 증가하고 있다. 최근 진행되고 있는 학문적, 기술적, 실리적 발전에 따라 인간의 감성을 변화를 추출하고자 하는 연구들이 활발히 진행되고 있다. 이러한 결과들을로부터 실제 동적 환경에서의 생리신호를 측정하여 감성의 변화를 추출하고자 하는 연구들이 활발히 진행되고 있다. 이러한 결과들은로부터 실제 동적 환경에서의 생리신호를 측정할 수 있다는 가능성을 확인하였고, 이 결과는 이론적, 실리적 발전에 따라 진단의 변화를 인식하고자 하는 연구들이 활발히 진행되고 있다.
노출됨으로써 주관적 평가와 생리적 반응을 통한 안정성에 대한 연구가 활발히 이루어지고 있다[23].

사물레이터가 실제 환경을 유사하게 재현할 수 있다는 점을 이용한다면 인간의 감성을 일찍부터 통제상황 아래에서 측정할 수 있고, 실제 상황에서 발생할 수 있는 여러 노이즈들의 영향을 없앨 수 있다는 장점을 가지고 있지만, 정확한 감성 변화를 생리 신호로부터 인식하기 위해서는 실험 결과의 왜곡 요소로 작용할 수 있는 Simulator Sickness에 대한 정량적인 평가가 필요하다. 따라서 본 연구는 자동차 Graphic Simulator에서 일정한 속도(60km/h)로 60분간 주행하면서 나타나는 피험자의 Simulator Sickness의 변화를 5분간의 시간 간격으로 주관적 평가와 주관적 자율신경계의 생리신호를 통해 살펴보면서, Simulator Sickness가 감정 평가에 어떠한 영향을 미치는지를 살펴보고자 하였다.

2. 실험 방법

실험 대상 피험자는 신체 건강한 20~28세의 성인 20명(남자 10명, 여자 10명)을 대상으로 하였으며 평균 연령은 23.4±1.8세이었다. 각 피험자에게는 실험 전 중추신경계 및 자율신경계에 영향을 줄 수 있는 담배, 카페인, 약물, 음주의 섭취를 금하였다.

실험 장치 자동차 주행을 위해 제시되는 화상 사물레이터는 Open GVS 4.2를 이용한 3D graphic을 사용하여 80 inch rear projection screen 위에 30(H)×25(V)의 FOV를 가지는 영상을 초당 프레임 수 30 frame/sec로 부사하였다.

생리신호 측정 및 분석 생리신호는 중추신경계 반응을 알아보기 위해 비파진환(Electroencephalogram, EEG)을 측정하였고 자율신경계는 심전도(Electrocardiogram, ECG), 피부온도(Skin temperature, SKT), 피부저항(Galvanic skin response, GSR)을 측정하였다. 측정 장비로는 Biopac MP100 series를 사용하였고, 분석 소프트웨어는 AcqKnowledge 3.5.2를 사용하였다. 그리고 모든 생리 신호의 측정치 주파수는 256Hz로 설정하였다.

EEG는 국제 10-20 electrode system법에 따라 전두엽(Fz), 전두엽(Cz) 후두측 전두엽을 붙이고, 기준 전두엽으로는 좌측 핵별로 설정하였다. EEC 신호의 데이터 처리는 A/D 변환 후 30Hz의 Cutoff frequency를 가지는 디지털 필터를 이용하여 low pass filtering을 하였다. FFT변환에 의해 주파수 분석을 수행하였으며, 각 측정 부위 Fz, Cz에 있어 α/total, β/total을 각각 계산하였다. 여기서 α는 8~13Hz, β는 13~30Hz, total은 1~30Hz로 각 구간을 설정하였다. 자율신경계 반응은 ECG(1 channel, lead II), Skin Temperature(1 channel, 왼손 약지), GSR(1 channel, 왼손 검지와 중지)의 생리신호를 측정하였다. ECG에서 심장박동변화율(Heart rate variability)은 R 포인트를 1초 미만에 의한 zero-crossing 방법을 사용하여 검출하였다. 검출된 R 포인트로부터 5분 동안의 평균 R-R 간격을 계산하였다. Skin Temperature와 GSR은 각 실험 환경에서 5분 동안 신호 진폭의 평균을 계산하여 비교 분석하였다.

주관적 Simulator Sickness 평가 피험자의 주관적 평가는 Simulator Sickness를 정량화하는데 현재 널리 사용되는 Kennedy와 Fowles의 Simulator Sickness Questionnaire(SSQ)를참조하였다[15]. SSQ는 총 16 가지 문항이며 각 문항은 4점 척도(0점~아무런지 않다, 1점~약간, 2점~보통, 3점~심하다)로 측정하며 허스꺼움(Nausea), 안구운동불안(Oculomotor), 방향 감각 이상(Disorientation)의 세 가지 증상군과 이 세 가지 항목을 종합한 Total Simulator Sickness로 구성되어 있다(표 1 참조). SSQ의 각 증상군의 점수는 각 증상별로 0~3까지의 숫자로 매겨진 값에 각각의 가중치를 곱하여 그 합계를 구하고, 그 합계에 특정 계수를 곱한 것이다. 또한 합계 점수는 그 합계들을 모두 더한 후에 특정 계수 값을 곱하여 구하도록 하였다. 통계 분석은 SPSS 9.0V을 사용하여 T-Test로 통계적 유의성을 계산하였다.

실현 과정 각 피험자들에게 실험 전 Simulator 적응을 위한 10분 정도의 연습시간이 주어졌고, 연습 후에는 충분한 휴식과 안정을 취하도록 하였다. 실험 전
표 1. Simulator Sickness Questionnaire 제안표

<table>
<thead>
<tr>
<th>증상</th>
<th>N (예상값)</th>
<th>O (안구운동통증)</th>
<th>D (항상감각상실)</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반적인 불편</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>피로</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>두통</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>눈의 피로</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>눈의 조정을 맞추기가 어려움</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>청 분비의 증가</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>발한</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>메스꺼움</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>심정직기 곤란함</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>머리가 옆 친 느낌</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>부시 시야</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>눈을 뭐래배해한 현기증</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>눈을 감았을 때의 현기증</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>빗방울눈물의 이지러움</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>위에대적부감각</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>트림</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>합 계</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>평균</th>
<th>N=10×0.64</th>
<th>O=2×0.58</th>
<th>D=0×13.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>(1)+0+(2)+0+(3)×3.74</td>
<td>가중치로 0</td>
<td></td>
</tr>
</tbody>
</table>

3. 실험 결과

3.1 주관적 Simulator Sickness 평가

표 2에서와 같이 메스꺼움, 안구운동통증, 방향감각상실 항목을 살펴보면, 모든 항목에서 60분 동안 계속 증가하는 경향이 나타났다. 이들 항목에서 실험 전 (안정)과 시간대별 차이를 비교하였을 때 메스꺼움, 방향감각상실은 실험 전에 비해 10분 이후부터, 안구 운동통증은 실험 전에 비해 15분 이후부터 통계적 유의가 나타났다. 이 사례가 항목을 합한 Total Simulator Sickness도 시간에 따라 계속 증가하는 경향을 보였고, 실험 전에 비해 10분 이후부터 통계적 유의가 나타났다. 이러한 시간의 변화에 따른 Total Simulator Sickness의 변화를 그림 2에 나타내었다.

3.2 생리 변증

그림 3에서와 같이 Fz 부위에서의 이동반응은 a/total와 b/total가 안정에 비해 5분 이후부터 통계적으로 유의하게 감소하는 경향을 보였으나 5분 이후 각 시간 사이의 통계적 유의는 관찰되지 않았다. 그림 4와 같이 Cz 부위에서도 Fz부위와 비슷한 경향을 보였다.
표 2. 시간의 변화에 따른 각 항목별 Simulator Sickness의 변화(평균 ± 표준편차)

<table>
<thead>
<tr>
<th>시간(min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSQ 항목</td>
<td></td>
</tr>
<tr>
<td>메스꺼움</td>
<td>2.2±</td>
<td>6.2±</td>
<td>9.5±</td>
<td>14.6±</td>
<td>20.2±</td>
<td>29.2±</td>
<td>33.1±</td>
<td>42.1±</td>
<td>45.5±</td>
<td>51.6±</td>
<td>54.4±</td>
<td>62.9±</td>
<td>71.8±</td>
</tr>
<tr>
<td>(Nausea)</td>
<td>5.4</td>
<td>11.7</td>
<td>15.1**</td>
<td>21.1**</td>
<td>30.0**</td>
<td>34.1**</td>
<td>37.0**</td>
<td>38.9**</td>
<td>37.5**</td>
<td>37.9**</td>
<td>36.9**</td>
<td>41.5**</td>
<td>42.7***</td>
</tr>
<tr>
<td>안구운동불안</td>
<td>5.8±</td>
<td>9.4±</td>
<td>12.7±</td>
<td>18.6±</td>
<td>23.2±</td>
<td>27.3±</td>
<td>30.8±</td>
<td>41.0±</td>
<td>47.7±</td>
<td>57.5±</td>
<td>60.1±</td>
<td>71.8±</td>
<td>75.8±</td>
</tr>
<tr>
<td>(Oculomotor)</td>
<td>7.4</td>
<td>13.0</td>
<td>18.6</td>
<td>23.2**</td>
<td>28.4**</td>
<td>31.4**</td>
<td>32.8**</td>
<td>33.8**</td>
<td>38.1***</td>
<td>35.6**</td>
<td>36.1***</td>
<td>36.7***</td>
<td>34.9**</td>
</tr>
<tr>
<td>방향감각상실</td>
<td>5.7±</td>
<td>10.4±</td>
<td>16.5±</td>
<td>20.5±</td>
<td>25.4±</td>
<td>31.1±</td>
<td>38.5±</td>
<td>48.7±</td>
<td>54.9±</td>
<td>67.1±</td>
<td>67.1±</td>
<td>79.4±</td>
<td>81.1±</td>
</tr>
<tr>
<td>(Disorientation)</td>
<td>6.6</td>
<td>25.7</td>
<td>30.0</td>
<td>37.7**</td>
<td>53.8**</td>
<td>60.5**</td>
<td>63.9**</td>
<td>70.0***</td>
<td>73.7**</td>
<td>70.8***</td>
<td>75.3***</td>
<td>80.4***</td>
<td>81.0***</td>
</tr>
<tr>
<td>Total Simulator Sickness</td>
<td>5.3±</td>
<td>11.4±</td>
<td>16.7±</td>
<td>25.5±</td>
<td>33.4±</td>
<td>44.2±</td>
<td>51.3±</td>
<td>62.9±</td>
<td>67.7±</td>
<td>77.0±</td>
<td>80.5±</td>
<td>89.3±</td>
<td>96.6±</td>
</tr>
<tr>
<td>6.6</td>
<td>16.5</td>
<td>22.1</td>
<td>27.6**</td>
<td>39.3**</td>
<td>44.0**</td>
<td>45.9**</td>
<td>49.8***</td>
<td>50.8***</td>
<td>49.4***</td>
<td>50.2***</td>
<td>53.9***</td>
<td>53.2***</td>
<td></td>
</tr>
</tbody>
</table>

그림 2. 시간의 변화에 따른 Total Simulator Sickness의 변화 (**p<0.01, ***p<0.001)

그림 3. Fz 부위에서 시간에 따른 α/Total과 β/Total의 변화 (**p<0.05, **p<0.01, ***p<0.001)

보였다. 즉, 안정에 비해 5분 이후부터 α/Total가 통계적 유의하게 감소하였고, 그리고 Fz부위와 마찬가지로 5분 이후 각 시간 사이의 통계적 유의차는 관찰되지
그림 4. Cz 부위에서 시간에 따른 α/Total 및 β/Total의 변화 (*p<0.05, **p<0.01, ***p<0.001)

그림 5. 자율신경계 반응 (*p<0.05, **p<0.01, ***p<0.001)

4. 결론 및 토의

동적 환경에서의 인간의 감정 평가는 많은 제한점들을 갖고 있다. 즉, 자극제시를 염격히 할 수 없고, 물방사와 같은 위험요소도 함께 내포하고 있다. 또한

한 끝이나 맡과, 근전도 등의 신호들은 동적 환경의 심각한 노이즈의 영향을 받기 때문에 분석하기가 어려운 단점도 포함한다. 그러나 시뮬레이터를 이용한다면 엄격한 동적 상태에서 실제 동적 상태를 유사하게 재현할 수 있고, 실제 상황에서 발생할 수 있는 여러 노이즈들의 영향을 없앨 수 있다는 장점을 가지고 있다. 그러나 시뮬레이터를 이용함에 따라
Simulator Sickness가 발생하는 꼴과 요소는 요인자에게 심리적, 생리적으로 큰 영향을 가져올 수 있을 것이다. 그러므로 본 연구는 자동차 Graphic Simulator에서 일정한 속도(60km/h)로 60분간 주행하면서 나타나는 요인자와 Simulator Sickness의 변화와 5분간의 시간 간격으로 주관적 평가와 생리신호를 통해 살펴봄으로써, Simulator Sickness로 유발되는 생리적 변화가 감성 평가에 어떠한 영향을 미치는지에 대해 고찰하고자 하였다. 또한 이러한 Simulator Sickness의 평가를 통해 Simulator 상에서 얻은 감성 평가를 위해 어떠한 방법론적 해결책이 있을 수 있을 것인가에 대해서도 토의하고자 하였다.

감성 평가에 있어 인간의 평도의 변화는 뇌파의 α 및 β 대역 전력의 변화로 나타나고 긴장도 변화는 주로 자율신경계의 변화로 유추할 수 있다는 사실이 여러 연구에 의해 밝혀졌다 (2, 3, 13, 14). 그러므로 본 연구로부터 Simulator Sickness에 의해 유발되는 α/total과 β/total 뇌파 변화와 교감신경계의 활성화는 마치 감성의 변화에 의해서 유발되는 생리 변화라고 오인할 충분한 가능성이 있을 수 있을 것이다. 즉, Simulator 상에서 Simulator Sickness로 유발되는 생리변화에 대한 정량적이고 객관적인 분석이 필수적이라는 사실을 본 연구로부터 도출할 수 있었다.

본 연구의 결과에서 주관적 Simulator Sickness 평가 결과는 10분 이후부터 안정에 비해 동적적 유의 차가 나타났다. 즉 요인자들 심리적으로 10분 이후부터 자신이 Simulator Sickness를 느낀다고 보고하였고 시간이 지남에 따라 선형적으로 Simulator Sickness가 증가한다고 보고하였다. 중추 및 자율 신경계의 생리 신호의 결과에서의 안정에 비해 5분 이후부터 대부분 통계적 유의차가 나타나서 Simulator Sickness로 유발되는 생리적 변화가 관찰되었다. 이러한 결과는 Simulator Sickness 발생 시점(trigger 시점)은 심리적 자각 증상과 생리적 반응 사이에는 차이가 있을 수 있고 심리적 자각 증상이 다소 느리다는 사실을 시사할 가능성이 있는 것으로 판단된다. 그리고 5분 이후부터는 일정한 평가, 즉, 시간에 따른 특정 생리 변화를 발견할 수 없었다. 이러한 결과는 생리 신호 반응만으로는 trigger 시점(Simulator Sickness 발생 시점) 이후에 Simulator Sickness 강도를 변별하기에는 어려움이 있을 것으로 판단된다. 그러나 실험은 신경적인 생리 신호 분석법만을 적용하였기 때문에 향후 키오스 또는 프레탈 등의 비선형 분석 방법으로 변별력을 높이면 Simulator Sickness 강도를 변별할 수 있을 것으로 기대한다.

결론적으로, 본 연구의 결과로부터 Simulator Sickness로 유발되는 생리 변화는 생리 신호를 이용한 객관적 강각 판단에 있어 위크 요소로 작용할 소지가 큰 것으로 판단되었다. 즉, Simulator Sickness에 의해 유발되는 생리변화인 α/total과 β/total의 뇌파 변화와 교감신경계의 활성화는 평도 및 긴장도를 판단하는데 위크 요소로 작용할 수 있을 것이다. 그러므로 향후 Simulator상에서 정확한 강각 판단을 위해서는 이러한 위크 요소를 최소화 내지 제거 시킬 수 있는 방법을 개발하여야만 할 것이다. 이를 위해서는 다음과 같은 여러 요소들에 대한 점검과 보완이 필요할 것으로 판단된다.

최종, 현재의 연구 결과에서는 Graphic Simulator상에서의 5분 이상의 실험은 Simulator Sickness로 유발되는 생리 변화가 감성 평가에 위크 요소로 작용할 가능성이 크다. 그러나 대부분의 감각 유발 및 평가를 위한 실험 폐기판단의 설계는 5분 이상이 대부분이므로 Simulator Sickness의 trigger 시점을 늦추는 수 있는 Simulator의 보완이 급격하다. 즉 Visual, Motion, Sound 등의 복합 자극이 현실감 있게 연동될 수 있도록 시스템 보완이 이루어진다면 Simulator Sickness의 trigger 시점을 늦출 수 있을 것이고 장시간의 감성 평가를 위한 실험 실험너다임의 설계에도 도움을 줄 수 있을 것이다.

둘째, 본 연구에서는 Simulator Sickness로 유발되는 생리 신호 변화를 정성적으로 분석하였다. 그러나 Simulator Sickness 강도에 따른 정량화한 생리변화를 정량적으로 추출할 수 있다면 적절한 후 신호처리 방법 (Post Signal Processing)을 이용하여 감정 변화로부터 유발되는 생리 신호로부터 제거가 가능한 것으로 사료된다.
참고문헌

