CAN A WIND MODEL MIMIC A CONVECTION-DOMINATED ACCRETION FLOW MODEL\ulcorner

  • Published : 2001.06.01

Abstract

In this paper we investigate the properties of advection-dominated accretion flows (ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli number in ADAFs allow a fraction of the gas to be expelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of outflows from the accretion flows(ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion flow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows(CDAFs) in which convection transports the angular momentum inward and the energy outward. There two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flow should have different X-ray flux value due to deficient matter in the wind model.

Keywords

References

  1. ApJ v.438 Abramowicz, M. A.;Chen, X.;Kato, S.;Lasota, J. P.;Regev, O.
  2. ApJ v.538 Agol, E.
  3. astro-ph/0007037 Ball, G.;Narayan, R.;Quataert, E.
  4. ApJ Beckert, T.
  5. MNRAS v.303 Blandford, R. D.;Begelman, M. C.
  6. MNRAS v.305 di Matteo, T.;Fabian, A. C.;Rees, M. J.;Carilli, C. L.;Ivison, R. J.
  7. MNRAS v.311 di Matteo, T.;Quataert, E.;Allen, S. W.;Narayan, R.;Fabian, A. C.
  8. A&A v.361 Hujeirat, A.;Camenzind, M.
  9. ApJ v.214 Ichimaru, S.
  10. MNRAS v.303 Igumenshchev, I. V.;Abramowicz, M. A.
  11. ApJS v.130 Igumenshchev, I. V.;Abramowicz, M. A.
  12. ApJ v.537 Igumenshchev, I. V.;Abramowicz, M. A.;Narayan, R.
  13. ApJ v.489 Manmoto, T.;Mineshige, S.;Kusunose, M.
  14. ApJ v.539 Narayan, R.;Igumenshchev, I. V.;Abramowicz, M. A.
  15. ApJ v.492 Narayan, R.;Mahadevan, R.;Grindlay, J. E.;Popham, R. G.;Gammie, C.
  16. ApJ v.428 Narayan, R.;Yi, I.
  17. ApJ v.444 Narayan, R.;Yi, I.
  18. ApJ v.452 Narayan, R.;Yi, I.
  19. Nature v.374 Narayan, R.;Yi, I.;Madadevan, R.
  20. ApJ v.539 Quataert, E.;Gruzinov, A.
  21. ApJ v.545 Quataert, E.;Gruzinov, A.
  22. ApJ v.520 Quataert, E.;Narayan, R.
  23. A&A v.24 Shakura, N. I.;Sunyaev, R. A.
  24. MNRAS v.310 Stone, J. M.;Pringle, J. E.;Begelman, M. C.
  25. ApJ v.531 Turolla, R.;Dullemond, C. P.