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ABSTRACT

Assume a company sells two products (4 and B) in a retail market. The company adopts a specific
promotion mechanism, Tie—in Promotion, in which product A's promotional discount coupen is dis—
tributed whenever a consumer purchases product B Product A4 will later be sold at a markdown price
when consumers eventually take the opportunity to redeem the coupon. In the integrated tie—in pro-—
motion and stocking policy, we assume managers of twe products coordinate by sharing informaticn
on the demand forecast and deciding the order gquantities and tie—in prometion program to maximize
joint profits. The optimal integrated tie—in policy is analyzed. The integrated tie—in promotion model
is then compared with two other base models: {1) a decentratized Newshoy mode) in which no pro-—
moticn is considered, and {(2) an individual promotion model in which managers design a promotion
program to promote one of the two products directly. The factors that make an integrated tie—in
promation a better approach are studied.

1. INTRODUCTION

In this paper we congider an integrated tie-in promotion and stocking policy that
links two products in a retail market. What are tie-in promotions? For example,
in 1994, CoreStates Financial Corp. had a tie-in arrangement with Disney’s Pre-
mier Cruise Lines. Customers who opened an account with the bank received free
cruise tickets for two children when they booked a family cruise. The promotion
motivated 5,000 customers to redeem their travel vouchers and yielded 42,000
new accounts {see Tellis [1998]). In another example, in 1983, Polaroid teamed up
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with Delta Airlines to increase sales of Polaroid Series 600 cameras. The “Buy
Polaroid 600, Fly Delta Free” promotion generated the biggest Christmas sell-
through for Polaroid in more than 10 years. About 33% (300,000) of the coupons
were redeemed. Hundreds of thousands of these persons flew Delta (see Shimp
and Delozier [1986]).

The major difference between a tie-in promotion and other consumer promo-
tion programs (e.g., premium, price packs, rebates, etc.) is that the former is run
by two cooperative partners, while the latter are mostly implemented by an indi-
vidual party. Therefore, a tie-in promotion inherently requires two parties’ inte-
grated viewpoints and coordination to work well. The issue of coordination in the
supply chain (or within decision-making facilities) has recently drawn much at-
tention. Parlar and Weng (1997) describe coordination between a firm’s manufac-
turing and supply departments; Kouvelis and Gutierrez (1997) study an interna-
tionally coordinated news-vendor problem; Weng (1995, 1997) analyzes channel
coordination in pricing and stocking operations; and Lee (2001) considered a coor-
dinated supply chain pricing, stocking, and return policy. Kohli and Park (1994),
Dolan (1990), Rubin and Carter (1990), Joglekar (1988), Banerjee (1986), Lee and
Rosenblatt (1986), and Monahans (1984) have considered synchronization of sup-
ply chain cycle time by providing a quantity discount. (See Thomas and Griffin
[19986] for a review of supply chain coordination issues.) These models show that
regardless of its simplicity, decentralized optimization can sometimes provide less
than desirable consequences, show how a member's excessive strength can be
transferred to the other party through a joint effort, and create a synergy effect to
jointly optimize mutual benefit. The tie-in promotion program that we will study
here fits perfectly into this kind of cooperative spirit.

In this paper, an integrated tie-in promotion and stocking policy is designed.
We study the factors that make an integrated tie-in promotion a better approach
by comparing the notion with two other models: (1) a decentralized Newsboy
model in which no promotion is considered, and each product manager individu-
ally optimizes his own profit function; and (2) an individual promotion model in
which one product manager designs a promotion program to promote his own
product directly. Here again, each party individually optimizes his profit function.
This paper is structured as follows. In § 2, a problem description, assumptions,
and notations are presented and the objective functions of the tie-in promotion
program are developed. In § 3, we develop and study the optimal integrated tie-
in promotion model. In § 4, we provide a numerical analysis to show how and

when integrated tie-in promotion helps to increase profits. Finally, a brief discus-
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sion is provided in § 5.

2. PROBLEM DESCRIPTION, ASSUMPTIONS, AND MODELS

In this section, we first discuss the setting for the problem and assumptions in
the model. The model developed in this study represents an abstraction of sales
promotion and inventory control as considered in its real-world application. Our
purpose is to enhance understanding and to gain managerial insights into the
effect of joint optimization in supply chain sales promotion and inventory control
policies. Therefore, we emphasize developing and analyzing a relatively complete
and general (but simple) set of premises that may hopefully capture the most es-
sential aspects of this important issue. Future research should overcome any
theoretical and empirical limitations of our medel.

We consider two companies sells two products (4 and B) in a retail market.
The company adepts a specific promotion mechanism --Tie-in Promotion-- in
which product A’s promotional discount coupon is distributed whenever a con-
sumer purchases product B. Product A will later be sold at a markdown price
when consumers eventually take the opportunity to redeem the coupon. The cus-
tomers consuming product B are divided into two exclusive sets: (a) Consumers
who initially (before presentation of a tie-in promotion) intend to consume product
B (type O (0ld)}; and (b) consumers who initially do not intend to consume product
B, but are later persuaded by the tie-in promotion to do so (type N (new)). Simi-
larly, type O consumers are divided into two mutually exclusive consumer sets:
{a.l) Those who are later persuaded by the tie-in promotion to consume both
products (type OY), and (a.2) those who are later not persuaded by the tie-in pro-
motion and consume only product B (type ON). Finally, type N consumers are
divided into two mutually exclusive subsets: (b.1) those who consume both prod-
ucts (NY), and (b.2) those who consume only product B (NN) (see Figure 1)

During the tie-in promotion, the demand for the product B is assumed to be
uncertain and dependent on the product A’'s markdown percentage. Standard
approaches introduced a convenient way to model the price-dependent random
demand. Specifically, the demand function is characterized by the two compo-
nents. The first component, representing the mean or deterministic part of the
random demand, is influenced by the price, whereas the second component, rep-
resenting uncertainty or the shape of the random demand, is price independent
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(see, for example, Leland (1972), Young (1978), Lau and Lau (1988), Porteus
(1990), and Emmons and Gilbert {1998)). Leland (1972), for example, has consid-
ered two price-dependent random demand functions--multiplicative and additive.
The multiplicative model formulates random demand d = A(P)A as the product

of a deterministic component A(P) and a probabilistic component A with

R

Consumer Types

Initial Decision About Consuming
o Product B

After Presentation of
Tie-in Promotion.
Decision About Using
Tie-in Coupon.

No Use Coupons?

Product B ;
NN ON
7 Normal Demand

Product A

Figure 1. Consumer Types

E(A)=1. Here, h(P), a decreasing function of price P, denotes the mean of

the random demand, and A denotes the uncertainty of the random demand. Tt im-
phies that the variance of the random demand increases as demand increases (price
decreases). This assumption is supported by Lau and Lau (1988), in which they
argue that for a low price (high demand) level beyond the normal operating range,
the random demand may have a large variance due to lack of past experience to
draw on. The second demand function considered in Leland (1972) takes an addi-
tive form d=m(FP}+4 and E{A)= 0. When demand is additively separable, the

variance of random demand is constant across all possible prices. This assump-
tion may be overly simplistic and not practical. In this work we use the first ap-
proach--a general multiplicative demand function--to formulate the random de-
mand. Let ¢ denote product A's promotional markdown price ratio (we use
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markdown price ratio to distinguish it from markdown rate @ =1-a). For exam-
ple, if product A with a list price of $10 is priced at 35% (& =0.35) off the original

face value, when consumers redeem the coupon, then «=0.65. Let n{z) denote
product B's expected demand as a function of « . Previous research suggests that,
in general, promotion produces a short-term increase in sales, but at a diminigh-
ing rate (see, for example, Tellis [1998]); therefore, we assume #(a) to be concave,
decreasing in «, 1e., dn{a)/da <0 and 8217(0:)/60:2 <0 for o@<1. Specifically,

the realized random demand of product B in a tie-in promotion period is formu-
lated as a product of mean of the random demand 7(a) and a probabilistic com-

ponent X with E(X)=1.Welet g(x) denote the probability density of X .

Now let us formulate the product A's random demand as follows. Product A's
total sales volume consists of two components: Normal Selling and Coupon Re-
demption (see Figure 1). The consumers who do not receive tie-in promotion dis-
counts generate normal selling volume, That is, they consume only product A. We
let f(¥) denote the probability density of product A's normal selling demand,

which is known but does not assume any specific form, and let # denote expected
normal selling demand. Let @ (a‘ry) denote the expected coupon redemption de-
mand, which amounts to @ (a’ry) = Eyy{a)+ Eyy(a) (Table 1 summarizes expect-
ed demands of various customer types). We assume CD(l‘r]) =0, 80 (a|ry)/6a <
0 and 8%a®(al7))/6a’ <0. Now, under the given premises, we see that the

benefits of tie-1n are for (1) Product B--increased sales generated by type NN con-
sumers, and for (2) Product A--increased sales generated by type NY and OY con-
sumers.

Table 1. Expected Demands for Various Consumer T+ypes

E +E (@)=n(a) Eo=Epy(@)+Egy (@) =n()

Ey{a) = Eyy (@)+ Eyy (e} =17(e)-7n(1)

E; Denotes expected demand of consumer type x, for example, £, represent expected

demand of consumer type o.

A Newsboy-type setting is used for formulating the problem (See Heyman
and Sobel {1990, Ch. 12] for an excellent review of the Newsboy problem.). The
parameters of the model are given as follows. Let N,n be the manufacturing
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costs per unit, §,q the order quantities, D,d the selling prices, and E,e the
emergency backorder manufacturing costs for products A and B, respectively, We
assume that the unfilled demand is backordered and met from the emergency
production run. For product 4, this includes not only the unfilled demands from
normal sales, but alsc the unfilled demands from the coupon redemption (con-
sumer types NY and OY). Finally, we assume D>E>N and d>e>n. Of
course, the above managerial scenario is one of many possible scenarios in the
real world. Again, we focus our attention on studying the tie-in alliance issue by
analyzing a relatively complete and general but simple model.

Let us now consider the coordinated tie-in promotion model. The company
initially produces q units of product B. If the random demand (x7) during the
selling season exceeds the availability (g), an emergency production session is
initiated, and the profit equals dxn—ng —e(xn—gq) . On the other hand, if xn<q,
the resulting profit is computed by subtracting the cost of goods sold g from the
sales revenue dxn. Dropping arguments x and y for g(x) and f(y), the ex-

pected profit functions for the product B is given by the following expressions.

N(q,a)p =dn (@) —ng— [ e(xn(@)-q)dG M

7

The product A's expected profit can be obtained in a similar fashion. The
company initially produces @ units of product A. If the normal selling demand

(y+x®) exceeds the availability (&), an emergency production session is initi-
ated, and the profit equals D(y+ax®)- N@-E (y+x®-@Q). On the other hand,
if y+x® <@, the resulting profit is computed by subtracting the cost of goods
sold N@ from the sales revenue D(y+ax®). The expected profit functions for

the product B is given by the following expressions.
@ (o0
N(Q.a), = D(u+a® (@) -NQ - [ {;_, E(x®(a|m)-Q+ y)dGdF
)

= Jo Iy E@®(ajn)-Q+5)dGdF (2)

In the next section we will study the integrated tie-in promotion model first,
in which we assume that the managers for the two products coordinate, that is,
share information on the demand forecast and jointly decide on order quantities
and a promotion program so as to maximize mutual benefits.
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3. THE OPTIMAL INTEGRATED TIE-IN PROMOTION POLICY

We first analyze the optimal manufacturing policy for the expected profit function
(1). It can be shown that the necessary condition for product B's manufacturing
quantity is given by the following expression:

q (@) =n(a)G1(1—%] EERC)

We see that ¢"{z) increases as the markdown rate & increases and the ra-

tio nfe decreases. These results all make intuitive sense. Now, substituting the

optimal order guantity q*(o:) into the expected profit function (1) reveals that
g (e))g =7 (a)[d ge'[G_, (g)xdG} ,

where £ =1-n/e. We see that (g (a))p is concave in . Adding expected

profit functions (1) and (2) reveals that the joint optimization problem equals:
maxT(@a|q" @)y = Tq @) + 1@, 4)

We now may analyze the optimality conditions for equation (4). Let
(@, a) = (Q—y)/d)(alr;). It can be shown that the necessary condition for the

markdown rate that optimizes (4) satisfies equation (5) (see Appendix 1):

D(D(o.'\rg) = A, where

aa) = —%T(Da -1 7 j;”(Q'“)xdeFD B e[, wiG) ©)

24

Here, —A(a) represents the cost penalty from increasing o by a unit. For
example, the first term represents the marginal profit loss net of emergency pro-
duction cost savings from decreasing the redemption demand (by decreasing & ).

We now look at the manufacturing quantity that maximizes the expected
joint profit function (4). It can be shown that the necessary condition for @ that

maximizes (4) at a given «a satisfies equation (6) (see Appendix 2):

1-2 = P6@@ayar ©
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As in the case for q*, Q* also increases as markdown rate @ increases and
ratio N/E decreases. Proposition 1 provides us with the properties of the optimal

solutions.

Proposition 1. (Proof. See Appendix 3.)
(8) 0Q/00t|nez <0, where TI(2).:= al'l(Q,a! q*)J/aQ =0, and d0/8Q|;y <0,

where TI(1)=811(Qa 1q ), /8 =0,
(b) The objective function I1(Q, |g’ ), is strictly concave; therefore, it has a

unique optimal solution.
(c) Let ap be the unit elastic point such that (P +a 6@/80()[“&": 0. The opti-

mal markdown price ratio o decreasing (increasing) in D if a’> te (o<
o). That is, for elastic markdown price ratios ("> tc), markdown rate o .
increases as I increases, and vice versa.

The optimal markdown rate & :

{c.]1) Increasing in d (c.2) Decreasing in N

(c.3) Decreasing in n 0

Proposition 1.a tells us that the optimal markdown rate @ increases as @
increases. A little reflection leads us to expect this result since the greater the
order quantity, the more likely leftovers that will be generated and more dis-
counts will be needed to stimulate higher redemption demand. We also can obtain
this result by observing condition (5). The term -9®/dx E(#) in equation (5) rep-
resents product A’s savings of emergency production costs as a result of increas-
ing o . Equation (5) reveals that o increases as E increases or @ decreases.
According to this result, when product A’s emergency production cost is relatively
high or manufacturing quantity is relatively small, there 1s a relatively high pos-
sibility of getting into a high-cost emergency production session. If so, it is more
rational to decrease the promotional demand (by decreasing & ) so as to avoid
expensive emergency production.

To obtain the optimal (@",a"), we need to solve equations (5) and (6) simul-
taneously. Unfortunately, neither equation provides closed form solutions. How-
ever, it 1s possible to do so numerically. Proposition 1(a) reveals that the optimal

(Q*,a*) are negatively related; therefore, the lower bound of the simultaneous

solution of order quantity @ (a") must be given by the upper bound of o Q).
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The necessary condition (5) reveals that the o must be less than the app that

satisfies @+ (a—-E/D)8®/0a =0; therefore, a reasonable upper bound of o (@)
is app. Now, the optimal solution can be obtained from an iterative procedure

that utilizes a simple approach that begins by substituting ayp into equation (6)

to obtain §;5 (lower bound of Q" (a")), followed by a straightforward iterative

procedure. Since both equations give unique solutions and since the bounds for
the solutions are well defined, the iterative procedure must give a unique simul-
taneous solution for each variable.

Let us now furnish a numerical analysis to study effects of two parameters'
(8d/6& and On/da@) variations on the optimal solutions (these parameters’
variations were not discussed in Proposition 1). The following assumptions are
used: Let g(x) and f(y) be uniformly distributed over [0,2] and [0, 2 ]. Although

our choice of uniform distribution is somewhat arbitrary, it is easy to visualize
the problem. The uniform distribution, because of its simplicity also has been
used extensively by Emmons and Gilbert (1998) in their recent work of supply
chain return policy. To keep things as simple as possible, we further assume
that the expected redemption demand for product A and the expected demand
for product B are linear, and are, respectively, of forms tD(afln) =0(l-a),

mle)=n,1-a)+amp and 1, >m. We let 77]5 =1, =1y - . The following base

parameters are used in the numerical experiment.

Table 2. Base Parameters Used in the Numerical Experiment

N n E € D d ®, M ™m H#=H, H,

14 14 24 24 40 40 400 800 700 400 800

Sd/fa =Dy and dn/da =n, Variation Figures 2 and Figures 3 summa-
rize two experiments regarding 7, (rate of change of Ey(a)) and @, (rate of
change of Epy(a)+Eyy(@)) variations. For @, variations, we keep other
parameters constant and change @, from 100 to 700 in increments of 100 (that
is, 100, 200, ...,700). Notic that here keeping 7, as a constant (keeping 7, and
77, as a constant) and increasing @, are equivalent to increasing the coupon re-

demption rate. Therefore, only product A benefits from the tie-in promotion. Fig-
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ure 2 gives the ratio between the optimal value and the lowest value in the range
of parameter variation. For example, Q*= 242 when @,= 200, and the lowest
€@ =199 when ®,= 100; therefore, the corresponding value for ®,= 200 equals
242/199 = 1.2. Figure 2 shows that € increases while a@ decreases as ®; in-

creases. It tells us that if coupon redemption rate is relatively high, the tie-in alli-
ance could take advantage of this opportunity and then reduce tie-in promotion
efforts (@ ). Analytically, equation (5) reveals that the optimal solution satisfies

D+A(@) =0, where A=Da(@®/6a)/®+d(@n/da)/® (for the sake of simplicity,
we let E =e=0). Figure 4 illustrates the A shift from I to Ilas @ increases
(by increasing @, ); therefore, o increases from o, to ay . For n, variation, we
keep other parameters constant and change 1, from 750 to 500 in increments of -
50 (that is, 750, 700,...,500). Notice that here, keeping @, as a constant and in-
creasing 1, (decreasing n,) is equivalent to increasing demand sensitivity of
En(a) (OEpn(n)/8& =m,); therefore, &@ increases (see Figure 4, where a de-
creases from o to o) to generate more new demand for product B, and coupon

redemption demand for product A.

LA "
NN 7
LN

100 200 300 400 500 600 700 @,

Figure 2. Optimal Policies for &, Variation

So far we have studied the jointly optimal tie-in policy. In the following sec-
tions, we provide a numerical experiment to compare expected profits from Coor-
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dinated Tie-in Promotion (hereafter, CP) with two other models -- (1) Individual
Promotion Model (IP), and (2) Individual Newsboy Model (NP) -- so as to further
enhance our intuition about the model.

1.6

1.5 pmm —

13 - -

12 .. -

750 700 600 650 600 550 500 Mt
Figure 3. Optimal Policies for #; Variation

v

Ay Gy dq

-nad [ — i -

111 ~

Figure 4. Parameter Variation Effects on «
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4. COMPARISONS WITH OTHER MODELS

In this section, we first compare CP with IP in which managers design an indi-
vidual promotion program to promote product A directly. We assume that the
demand density function of product A in IP is a multiplicative type. The realized
random demand is yH(z) with E(y)=1. We let f(») denote the probability

density of y. Here, a is product A’s IP markdown price ratio, and H(a) is the
expected demand. We assume OJH(a)/da <0 and 62(aH(a))/ fa” <0. We next

compare CP with a simple Newsboy model (NP) in which no promotion of any
kind is considered and the two parties solve simple Newsboy problems to indi-
vidually design their order quantities. The expected profit functions and optimal
policies for NP and 1P are provided in Table 3.

Table 3. Optimal Pelicies

Objective Functions for NP Optimal Policies

Product B H(q)|B;IP =dm(l) —ng- J';e {(x-q)dG g =G'1-n/e)

Product A THQ)|, , = DH() - NQ - [F E(y- @)dF Q =F(1-N/E)
Objective Functions for IP Optimal Policies

Product B T(g)|, ,, = dn(l) - ng -] e(x-q)dG q =G (1-nfe)

Q'=H(a)F '(1- N/E),

Product A H(Q,a)|A:H, =g D H(a) and D{H(a)+aH(a)]a}

-NQ- [ E(yH(a)-Q)dF = ['a EyH(@),dF
H{x) H{a}

See Appendix 4 for the derivation of the necessary and Sufficient conditions for LP.

Numerical experiments are now shown in which the expected profits of CP
are compared with those of IP and NP. The following assumptions are made for
NP, and IP, respectively:

Problem Set IP: The notations used in the following paragraph are based on
those in Table 3. Let g(x) and f(3) be uniformly distributed over [0, 277(1)] and [0,

2]. We assume that the expected demand for product A is linear, and is of the form
H(z)=Hy(1-a)+aH,, Hy>H,. We let dH/6@ =H, =Hy-H;, and p= H(l)

(we use u to denote product A’s expected normal selling demand in CP). The aver-
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age demand for product B can be obtained by 7(1) {defined in CP, equals E,).

Problem Set NP: Let g{x) and f(v) be uniformly distributed over [0, 2 77(1)]
and [0, 2H(1)].

We now show the effects of the parameters’ variation on the optimal values.
We first solve three problems and find the optimum values (Qqp, ¢cp.dcp).
(@p. azp, qp), and (@unp, qup) for CP, IP and NP, respectively. We then sub-

stitute these values into a joint expected profit function and compute the joint
profits T, cp, II;p and I1; yp. Finally, we compute the Percentage Increase

Ratios (PIR} in the expected profits: (HJ;CP/['IJ;NP -1) x 100 (PIR/NP) and
(II;.cp! T p —1) x 100 (PIR/P). The base parameters summarized in Table 2
are used again here. However, we will change the value of base parameters when
it is necessary.

onjdd=n,, o0/dx=0,, and JH/dx =H, Variation. Figure 5 summarizes
three experiments regarding 7, (rate of change of Ey(e)) and @y (rate of
change of ®(a)= Epy + Fyy ) variations. In the first experiment we let 7, =0,
and provide #,=®, variation; the second experiment analyzes 7, variation,
keeping @, as a constant; and the third experiment demonstrates ®, variation,
keeping 7, as a constant. For #,=®, variation, we keep other parameters con-
stant and change 7,= ®; from 100 to 400 in increments of 50 (that is, 100,
150,...,400). Figure 5 reveals that CP payoffs (PIR/NP) increase as 7, = @, in-
creases. Figure 5 also reveals (here, we let 7, =700 and #,=800) that reducing
@, while keeping 7, as a constant will decrease PIR/NP. We see that reducing
&, while keeping 7, as a constant is equivalent to reducing the ability of tie-in

promotion in attracting redemption demand. We also see from Figure 5 that re-
ducing 7, (by increasing #,) while keeping ®, as a constant is equivalent to

reducing the effectiveness of tie-in promotion to allure the type N customers, and
consequently reduces PIR/NP (here, we let & =400 and 7, =800).

The numerical experment tells us that an integrated tie-in promotion should
be adopted when &7n/da =7, and 6®/oa@ = D, are both relatively high in their

values--that is, when product A’s price markdown can successfully attract large
numbers of (1) consumer type N (high 8n/8@& =1n,) and (2) redemption demand

thigh o®/da = d;). One such example is two highly related, complementary pro-

ducts such as a Thanksgiving turkey and white wine.
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N, n variation. For N,n variation, we keep other parameters constant

and change N from $10 to $22 in increments of $2 (that is, $10, $12, ..., $22),
and n from $10 to $22 in increments of $2. Here, we let &,=400, n,="700,

No = 800, Hy;=1000 and p(=H(Q1))=200. Figure 7 gives PIR/NP. It reveals that

tie-in alliance payoffs are most significant when the business environment is rela-
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tively favorable for product A Qow N ). This result makes intuitive sense. When
N is relatively low, promoting product A% sales will no doubt increase the joint
profit (Notice that CP promotes both products). However, Figure 8 also tells us
that if oH/0& is relatively high (here, H, = H,~H, =800, ®,=400 and 7, =
100) and N is extremely low, then we might as well promote product A directly,
instead of circumventing as in the tie-in promotion. Let us verify this argument
by modifying the parameter values to H;=600 (H,=400). Our numerical ex-

periment then shows that PIR/IP increases as N decreases. This result is obvi-
ous. The sales increase to product A from CP is more than that of [P in the modi-
fied case; therefore, PIR/IP increases as N decreases. This result confirms again
the earlier findings that an integrated tie-in promotion should be adopted when
n/é@ =n, and OP/da = @, are both relatively high in their values.

Figure 7. PIR for N, n Variation (CP VS NP)

Figure 8 reveals that PIR/IP shows an increasing trend when n decreases.
When n is relatively low, promoting product B will increase the joint profit. We
see that CP promotes not only product 4, but also product B. Therefore, PIR/IP
shows an increasing trend as n decreases. Figure 7 reveals that PIR/NP in-
creases as n increases. The reason for this result can be obtained from Figure 9.
Figure 9 illustrates qqp —qyp for a specific case in which N=10. We vary n

from 10 to 22. We observe that ggp (through the process of joint optimization)-
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shows a steeper decreasing trend than gnp as n increases. Equation (3) and
Table 3 reveal that both gqp and gyp decrease as n increases. However, CP

adjusts more dynamically to the parameter variation. This timely adjusting
strategy causes PIR/NP to increase as n increases.

10 10

Figurs &. PIR for N, n Variation {(CP VS IP)
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Figure 9. Difference in Decision Variables
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So far we have assumed that d7n/0@ =n, <0®/da = ®;. However, in the

real-world situation this relation might not necessarily hold. For example, in Sec-
tion 1 we have provided an example of a tte-in alliance between CoreStates Fi-
nancial Corp. and Disney’s Premier Cruise Lines. The example reveals that the
promotion motivated 5,000 customers to redeem their travel vouchers and yielded
42,000 new accounts. The tie-in generated far more consumers (consumer type N)
of the product B (CoreStates Financial Corp) than did product A (redemption de-
mand, Disney’s Premier Cruise Lines). Therefore, in what follows we provide a
numerical experiment in which we assume 7, = @, and keep all the previous
assumptions intact. We let $;=400, 5,=300, 5,=800, H;=1000 and H,=
300. The numerical experiment that compares CP with NP is summarized in Fig-
ure 10. Now, comparing that to Figure 7, the numerical experiment shows com-
pletely different results toward n and N variations. First, PIR/NP shows an
increasing trend when n decreases. Note that in the previous example the differ-
ence between gpp and gup is not very large due to a low 7, value. In this ex-
ample, however, qrp is much higher than gup due to a high 5, =500 value;
therefore, the benefit of the decrease in n is very significant. Second, PIR/NP
increases as N increases. Figure 9 illustrates a specific case in which n =10. We
vary N from 10 to 22. We observe that @np — @yp increases initially and then
follows a decreasing trend as N increases. That is, initially @up reveals an
overly sensitive decreasing trend toward N increases (Equation (6) and Table 3
reveal that both €qp and Qup decrease as N increases), later showing overly
insensitive behavior toward N increases. This contributes to the sub-optimality
of model NP,

Although not provided in this paper, we also studied the effects of price (d, 1))
variations on the integrated tie-in promotion model. In conclusion, the numerical
experiments reveal the following two findings:

(F1) First, PIR/NP is most significant when either (a) 7, <®jand N(d) de-
creagses and n (D) increases, or (b} 5, 2P, and N (d) increases, and
n (D) decreases.

(F2) Second findings, PIR/IP is most significant when either (a) on/é@ =75, and
oD /om =@, are relatively high; éH/da =H, is relatively low; N {(n) de-
creases; d (D) increases, or (b) on/oa =7, and 8@/0@ = @, are relatively
low; 8H/0@ =H, is relatively high; N (d) increase; n (D) decrease. In
particular, if the first two conditions of (b) apply, and N decreases and I
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increases, then IP can outperform CP.

Figure 10. PIR for N, n Variation (CP VS NP)

4. Discussion and Conclusion

In this paper, an integrated tie-in promotion model is studied. Several find-
ings were reported. First, our study reveals that an integrated tie-in promotion
should be adopted when both 85/8@ =n, and 8®/8@ = &, have relatively high

values. We see that reducing 0®/8& = @, is equivalent to reducing the effective-
ness of tie-in promotion to attract redemption demand. On the other hand, re-
ducing 8n/6& =7, is equivalent to reducing the ability of tie-in promotion to al-

lure type N customers. Hence, the benefits of a tie-in promotion are most signifi-
cant when product A’s price markdown can successfully attract large number of
type N (high 87/0@ =n,) customer and redemption demand (high 2®/dax = @)

Second, we have shown that the integrated tie-in promotion does not always
promise a greater benefit. It tells us that TP can be a better option when
8H/oa =H, (measures the effectiveness of an individual promotion) 1is extremely

high. Third, we have shown that PIR/NP is most significant when either (a)
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Ny <@, and N (d) decreases and n (D) increases, or (b) n, 20, and N (d)

increases and 2 (D) decreases. This result is particularly insightful when we
note that according to our finding, two companies (or two divisions of a company)
facing different business environments can form a tie-in alliance to diversify their
risk. If case (b) applies, then the tie-in alliance benefit is most significant when
the business environment is relatively favorable for product B {low n, high d)
and relatively hostile for product A ¢high N, low D). For example, assume a
company produces both Thanksgiving turkey and white wine. Now, assume that
the Thanksgiving turkey (product A) faces a very competitive environment (its
demand and profit margins are lowered due to overcompetition). This product
could form a tie-in alliance with white wine (product B) so as to diversify its risk
(given that the white wine business environment is very favorable). The 1984
promotion campaign between Polaroid and TWA is a good example of an alliance
between two products facing different business environments. The tie-in was
designed to move Polaroid’s products (product B) during the Christmas season
and to sell TWA Airline (product A) tickets during a low demand, post-holiday
period (see Shimp and Delozier [1986]).

Finally, we have demonstrated that PIR/IP is most significant when either
(a) n, and @, are relatively high, and 8H/d& = H, is relatively low; N and n

decrease; d and D increases, or (b) 7, and @, are relatively low, and H, is

relatively high; N {(d) increase; n{D) decrease. In particular, if first two condi-
tions of (b) apply, and N decreases and D increases, then IP can outperform CP.

Our focus so far does not allow us to study the possibility of a situation in-
volving competitive environment so that the consumers can have the alternatives
of tie-in promoted products offered by other companies. Another limitation is that
the model only considers a single period situation. Generally, in a real-world ap-
plication, a promotion operation may consist of more than one period. Future
work on a progressive multiperiods tie-in promotion model could certainly shed
further light on the topic.
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Appendix 1. Necessary and Sufficient Conditions of a Differentiating
8ll; /o with respect to «, we then have

AT,
fa

=(d—ej§_l dea’?(“) +D{(D(a|ry)+(a E/D)—ag(#}

aq’(“ |’7) +dGdF

+ ] B
The necessary condition (5) can be obtained from the first derivatives.
Next, differentiating 811, /3¢ with respect to « again gives

o1y (d e_[ ] &"na) +2D———a®(a|ﬂ)+(Da—E)—~—4_-ad®(aIn)

fa’ da” fa da®

& 00(em Y
N jOEa—:f"L) dGdF - | E[ a(Zh)J g(w)/G)(aln)dF.

The first term is negative since 8°7/3a* <0 and Il(g",a)p 2 0. We now

consider two situations: #°®/8e® <0 and 8*®/da’20.
(1) Assume first 8°®/da* 2 0.
It is seen that - E 82®/6a2 + f J?E62(D/aa2 xdGdF =
- [T [P Ed*0/0a® xdGdF + [ [ E*0/0a" xdGdF <0.
We also see that 28 ®/da +a 8°®/9a” =% (a®)/oa® + 00[da <0, since 30/

pa<0 and 8*(a®)/da’ = 0®/ba +ad*®/da® <0,

(2) Assuming now 8°®/da’ <0, then 6°®/da” (Da—E)<0, since it is appar-
entthat aD>E .

Therefore, by (1) and (2), the second derivatives also is negative, and
the profit function is concave.
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Appendix 2. Necessary and Sufficient Conditions of @

The partial derivative of IT, with respect to @ gives:

311,

Q@
20 =E-N ~Ej0 G(»)dF .

Rearranging the term gives the necessary condition (6). We now con-
sider the second order derivatives:

QMdF <0,
o {ofr)

11
aQZJ = _Ej
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Appendix 3. Proof of Proposition 1

a) Derivation of é‘Q/éa]n(z) <0

We see that o°I,/6Qdu = E [ g(w)o(Q.a)(@®/0a)/®dF . Therefore, it

follows that

o, [o,  Jy B@XQ-2) @dah/oa)dF

[ -
ne  9Q0a/ 9Q0Q D(aly) L? glw)dF

g

<0, (A3.1)

Equation (A3.1) reveals that « and @ are negatively related, and the
decreasing rate of @ increases as the elasticity of redemption demand
@'/d increases. This makes sense intuitively. With high demand elasticity,

managers can comfortably increase ordering quantity, since high demand
elasticity implies that a little discount can satisfactorily digest all of the
order quantity. The derivative of aa/aQ\n m < 0 can be obtained similarly.

The implicit derivative reveals that

ai‘ _ oy, [, :“I @)@, )m(a}n)dF/cD( |) <0 (A3.2)
aG')I"I(IJ

caol) ] Sada

As noted in Appendix 1, the denominator in (A3.2) is negative, and by
definition &®/dx <0; hence, (A3.2) is negative.

b) The Sufficient Condition

The determinant of the Hessian:

1| _s°n s _[ A1 ]2 >|ﬁ| _ 2% 2%l [ FoI1 T

Q% sa® | 6uiQ Q* s | 6adQ
where
2
R 8D(a|n) ) Eg(w) A1
_ dF .
2a’ LS[&)(Q,(Z) da } ¢>(a|17) g Ao”

The result follows since
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A1 81 _ J-QEa)(Q,a)g(a)) 6®(a|n) JF ’ [ 2*n :
Q% 2a> | olay) dax NN

¢) The Effect of Parameters' Variation on Markdown Rate

c.1) We first evaluate

_ [cb<a|n> va a¢a<“|”) J / o1,
ri{1) & da

The expression shows us that 35*/8D is positive if z <z, , and nega-

da’
oD

tive if &> @, where (®+add/3a)=0 at a=a..

* g
c.2) da | = —Onle) ai,;’so. Therefore, the markdown rate 1s in-
ad o da”
(1)
creasing in product B's price.
* 2 2
ey 2| 0,00 [,
ON ) oad® ON/ B«
5 -1
Since 29 ={%‘L} <0, and
oN|nE) | 0Q°
z /D
oL [ E0@a)g(@) @n) 0@ yp g,

fadl da o)

Therefore, the markdown rate is decreasing in product A's manufac-
turing cost.

. a o) 2 0
c.4) Oc = efG_1(§)xdG an(a)/aon‘] >0 since Mzo

on 1) on dex e on
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Appendix 4. Table 3: Necessary and Sufficient Conditions for IP

Let 6(a) = @/H(a). Differentiating IT, ,, with respect to «, and equat-

ing to zero, we then have

oIl 4.1p OH(c) » . OH(a)
_— = _— — E F = .
P D {H(a) +a Tt I@ y P dF =0

Rearranging the term gives the necessary condition. Next, differenti-
ating 8l 4 p /0a with respect to « again gives

2 2 2
I lasp _opfH@  p P | gy ag(a) F0)°0) - [y D g
; . . ;

o da z o

The sum of the first two terms is negative since az(aH)/aaz <0 and
¢H/6a <0. The third term is negative. To address the sign of the fourth

term we need to consider two situations 8°H/6a®<0 and 3°H/da®>0.
Assuming first &°H/da® >0, the fourth term is negative, Assuming
#H/da* <0, the sum of the second and fourth terms is negative since
D d*H/90* = I:Da 82H/6a2 ydF = EEyazH/aaz dF since it is apparent that
aD>E .

We will now show that the objective function I1{@,a),.;» is concave. Let

g
> a 1_I.A.;l’P

0> _~E0*(@/(0)@H(@)/6a)’  OTamw

Sa’ Hia) e’

9
We see that a HA;P = ~Ef(©) . The determinant of the Hessian
fe H(e)

2 2 2 W 2 2 20 )
|H|:5’1'I 5‘[[_ 711 >|ﬁ|:&H 5"'1_[_ Z°T1
' Q® fa® | fad@ Q% o’ | 0adQ)

The result follows since

o Ao _[Ef(@)ﬂ(a)(ﬁH(a)/@a)T= o Y
aQ?* sa’ Ha) BabQ |



