Observation of dispersion-like signal based on velocity-selsctive saturated absorption spectroscopy and frequency stabilization of diode laser

속도선택 포화흡수분광을 이용한 분산형 신호의 관측 및 반도체 레이저의 주파수안정화

  • Park, Sang-Eon (Department of Physics, Chungnam National University) ;
  • Cho, Hyuck (Department of Physics, Chungnam National University) ;
  • Kwon, Taeg-Yong (Time and Frequency Lab., Korea Research Institute of Standards and Science) ;
  • yang, Sung-Hoon (Time and Frequency Lab., Korea Research Institute of Standards and Science) ;
  • Lee, Ho, Seung (Time and Frequency Lab., Korea Research Institute of Standards and Science)
  • 박상언 (충남대학교 물리학과) ;
  • 조혁 (충남대학교 물리학과) ;
  • 권택용 (한국표준과학연구원 시간주파수 연구실) ;
  • 양성훈 (한국표준과학연구원 시간주파수 연구실) ;
  • 이호성 (한국표준과학연구원 시간주파수 연구실)
  • Published : 2001.06.01

Abstract

We observed a velocity-selective saturated absorption spectrum when the pump beam intersects the probe beam at a finite angle with a saturated absorption spectroscopic configuration in the cesium vapor cell. And we also observed a dispersion-like signal by measuring the difference between two velocity-selective absorption spectra produced by two parallel probe beams intersected by one pump beam. The dispersion-like signal was changed with the crossing angle and the crossing position of the pump and probe beams and compared with the calculated result. The dispersion-like signal was used as a frequency discriminator, and the laser could be frequency-stabilized without any frequency modulation. As a result, the square root of Allan variance was $\sigma_y(\tau=1s)=7$\times10^{-12}$, for the sampling time of 1 s.of 1 s.

세슘 $D_1$전이선에 해당하는 파장 894 nm의 레이저시스템을 제작하여 포화흡수광 실험을 하였다. 포화흡수증기셀 내에서 조사광을 펌프광에 대해 일정한 각도로 교차시켜서 속도선택적인 포화흡수분광신호를 관찰하였다. 이신호는 펌프광과 조사광의 교차하는 각도와 위치에 따라 변했다. 이때 두 개의 조사광에 의해 만들어진 속도선택 포화흡수분광신호들의 차이를 측정함으로써 분산모양의 주파수 분별신호를 만들 수 있었다. 이를 이용하여 주파수 변조없이 반도체 레이저의 주파수를 안정화할수 있었다. 그 결과 주파수 안정도$\sigma_y(\tau=1s)=7$\times10^{-12}$, $\sigma_f(\tau=1s)=2.4kHz$ 이었다.

Keywords

References

  1. Laser Spectroscopy W. Demtr$\"{o}$der
  2. Phys. Rev. Lett. v.26 no.16 Complete hyperfine structure of a molecular iodine line T. W. Hansch;M. D. Levenson;A. L. Schowlow
  3. 새물리 v.34 no.4 공촛점 Fabry-Perot 공진기의 공진광 되먹임에 의한 반도체 레이저의 선폭축소 및 주파수 안정화 박상언;이호성;박종대;조혁
  4. Jpn. J. Appl. Phys. v.35 no.1A Frequency detuning and stabilization of a diode laser using the Zeeman shift of the saturated absorption signal of rubidium atoms H. S. Lee;S. H. Yang;Y. B. Kim;S. E. Park;H. Cho;J. D. Park
  5. 한국광학회지 v.4 no.2 루비듐-87원자 D₂전이선에 대한 광펌핑 포화분광 이호성;박상언;조혁;박종대
  6. Opt. Comm. v.120 no.15 A sigle mode, cw, diode laser at the cesium D₁(894.59㎚) transition S. B. Ross;S. I. Kanorsky;A. Weis;T. W. H$\"{a}$nsch
  7. Apply. Phys. Lett. v.47 no.10 Frequency stabilization of an InGaAsP distributed feedback laser to an NH₃absorption line at 15137Å with an external frequency modulator T. Yanagawa;S. Saito;S. Machida;Y. Yamamoto;Y. Noguchi
  8. IEEE Photon. Technol. Lett. v.4 no.1 Frequency stabilizaed laser diode locked acetylene gas absorption lines using fiver-pigtail-type acoustic optical modulator Y. Sakai;I. Yokohama;G. Kano;S. Subo
  9. Jpn. J. Appl. Phys. v.28 no.10 Frequency stabilization of laser diodes to the Cs-D₂ line with the Zeeman modulation method T. Ikegami;S. Ohshima;M. Ohtsu
  10. Appl. Opt. v.37 no.15 Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor K. L. Corwin;Z-T. Lu;C. F. Hand;R. J. Epstein;C. E. Wieman
  11. J. Korean. Phys. Soc. v.35 no.3 Saturated absorption spectroscopy in the presence of a longitudinal magnetic field U. Shim;J. A. Kim;W. Jhe
  12. Jpn. J. Appl. Phys. v.21 no.5 Frequency stabilization of a He-$^{22}Ne$ laser by intracavity polarization spectroscopy of CH₄.Ⅱ M. Ohtsu;T. Tako
  13. 한국광학회지 v.6 no.4 87Rb D₂전이선에 대한 원평광 분광 연구 및 레이저 주파수 안정화 문한섭;김승일;김현아;김중복
  14. Opt. Lett. v.16 no.12 External-cavity diode laser using a grazing-incidence diffraction grating K. C. Harvey;C. J. Myatt
  15. Photodiodes Hamamatsu 카탈로그
  16. IEEE Trans. Instrum. Meas. v.IM-20 no.2 Characterization of frequency stability J. A. Barnes;A. R. Chi;L. S. Cutler;D. J. Healey;D. B. Lesson;T. E. McGunigal;J. A. Mullen;W. L. Smith;R. L. Sydnor;R. F. C. Vessot;G. M. R. Winkler
  17. IEEE J. Quantum Electron. v.QE-21 no.12 Linewidth reduciton of a semiconductor laser by electrical feedback M. Ohtsu;S. Kotajima
  18. IEEE J. Quantum Electron. v.QE-29 no.12 Homodyne optical phase locking of resonant cavity coupled semiconductor lasers C. H. Shin;M. Ohtsu
  19. Jpn. J. Appl. Phys. v.23 no.6 Derivation of the spectral width of a 0.8㎛ AlGaAs laser considering 1/f noise M. Ohtsu;S. Kotajima
  20. IEEE J. Quantum Electron. v.QE-25 no.4 Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit K. Kikuchi