Fuzzy r-Pre-semineighborhoods and Fuzzy r-Pre-semicontinuous Maps

Seok Jong Lee and Youn Suk Eoum

Department of Mathematics, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea

Abstract

In this paper, we introduce the concepts of fuzzy r-pre-semiopen and r-pre-semiclosed sets. With them we define fuzzy r-pre-semiinterior and r-pre-semiclosure. We also introduce and investigate the properties of a fuzzy r-pre-semicontinuous map, a fuzzy r-pre-semiopen map and a fuzzy r-pre-semiclosed map. These concepts are generalizations of the Bai Shi-Zhong's fuzzy pre-semicontinuity.

Key Words: fuzzy r-pre-semiopen, fuzzy r-pre-semicontinuous

I. Introduction and preliminaries

As a generalization of a set, the concept of a fuzzy set was introduced by Zadeh[1]. Chang[2] and Lowen[3] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. Some authors[4,5,6,7] introduced other definitions of a fuzzy topology as a generalization of Chang's fuzzy topology or Lowen's fuzzy topology.

Bai Shi-Zhong[8] introduced and studied fuzzy pre-semiopen sets and fuzzy pre-semicontinuous maps in Chang's fuzzy topology. Also Bai Shi-Zhong and Wang Wan Liang[9] established some other properties of a fuzzy pre-semicontinuous map by the concept of fuzzy pre-semiopen q-neighborhoods in Chang's fuzzy topology.

In this paper, we introduce the concepts of fuzzy r-pre-semiopen and r-pre-semiclosed sets. With them we define fuzzy r-pre-semiinterior and r-pre-semiclosure. We also introduce and investigate the properties of a fuzzy r-pre-semicontinuous map, a fuzzy r-pre-semiopen map and a fuzzy r-pre-semiclosed map. These concepts are generalizations of the Bai Shi-Zhong's fuzzy pre-semicontinuity.

We will denote the unit interval [0,1] of the real line by I and $I_0 = (0,1]$. A member μ of I^X is called a fuzzy set in X. For any $\mu \in I^X$, μ^c denotes the complement $1-\mu$. By 0 and 1 we denote constant maps on X with value 0 and 1, respectively.

Definition 1.1 ([9]) Let μ be a fuzzy set in a fuzzy

topological space (X, T). Then μ is said to be

- (1) fuzzy pre-semiopen if $\mu \leq \sin t (\operatorname{cl}(\mu))$,
- (2) fuzzy pre-semiclosed if $scl(int(\mu)) \leq \mu$.

Definition 1.2([9]) Let x_{α} be a fuzzy point of a fuzzy topological space (X, T). Then a fuzzy set μ of X is called

- (1) a fuzzy pre-semineighborhood of x_{α} if there is a fuzzy pre-semiopen set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (2) a fuzzy quasi-pre-semineighborhood of x_{α} if there is a fuzzy pre-semiopen set ρ in X such that $x_{\alpha}q\rho \leq \mu$.

Definition 1.3([9]) Let $f:(X,T)\to (Y,U)$ be a map from a fuzzy topological space X to a fuzzy topological space Y. Then f is said to be

- (1) fuzzy pre-semicontinuous if $f^{-1}(\mu)$ is a fuzzy pre-semiopen set in X for each fuzzy open set μ in Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy pre-semiclosed set in X for each fuzzy closed set μ in Y,
- (2) fuzzy pre-semiopen if $f(\mu)$ is a fuzzy pre-semiopen set in Y for each fuzzy open set μ in X,
- (3) fuzzy pre-semiclosed if $f(\mu)$ is a fuzzy presemiclosed set in Y for each fuzzy closed set μ in X.

11. Fuzzy r-pre-semiopen sets

In this section, we are going to define fuzzy r-pre-semiopen and fuzzy r-pre-semiclosed sets, and investigate some of their properties.

Definition 2.1 Let μ be a fuzzy set in a fuzzy topological space (X,T) and $r{\in}I_0$. Then μ is called (1) a fuzzy r-pre-semiopen set if $\mu{\leq}$ sint $(cl(\mu,r),r)$,

Maniscript received March 15, 2001; revised May 1, 2001.

(2) a fuzzy r-pre-semiclosed set if $\mu \ge \text{scl}(\inf(\mu, r), r)$.

Theorem 2.2 Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then the following two statements are equivalent:

- (1) A fuzzy set μ is fuzzy r-pre-semiopen.
- (1) A fuzzy set μ^c is fuzzy r-pre-semiclosed.

Proof. (1)
$$\Rightarrow$$
(2) Let μ be a fuzzy r -pre-semiopen set. Then $\mu \leq \operatorname{sint}(\operatorname{cl}(\mu,r),r)$. Since $\operatorname{sint}(\mu,r)^c = \operatorname{scl}(\mu^c,r)$ and $\operatorname{cl}(\mu,r)^c = \operatorname{int}(\mu^c,r)$, we have $\mu^c \geq \operatorname{sint}(\operatorname{cl}(\mu,r),r)^c = \operatorname{scl}(\operatorname{cl}(\mu,r),r)$. $= \operatorname{scl}(\operatorname{int}(\mu^c,r),r)$.

Therefore μ^c is fuzzy r-pre-semiclosed.

(2) \Rightarrow (1) Let μ^c be r-pre-semiclosed. Then $\mu^c \geq \operatorname{scl}(\inf(\mu^c, r), r)$. Since $\operatorname{scl}(\mu, r)^c = \operatorname{sint}(\mu^c, r)$ and $\operatorname{int}(\mu^c, r) = \operatorname{cl}(\mu, r)^c$, we have $\mu \leq \operatorname{scl}(\inf(\mu^c, r), r)^c = \operatorname{sint}(\inf(\mu^c, r), r)$.

Thus μ is fuzzy r-pre-semiopen.

Remark 2.3

- (1) Every fuzzy r-preopen(r-preclosed) set μ is fuzzy r-pre-semiopen (r-pre-semiclosed).
- (2) Every fuzzy r-semiopen(r-semiclosed) set μ is fuzzy r-pre-semiopen (r-pre-semiclosed).

Proof. (1) Let μ be a fuzzy r-preopen set. Then $\mu \leq \inf$ ($\operatorname{cl}(\mu, r), r$) $\leq \inf$ ($\operatorname{cl}(\mu, r), r$). Therefore μ is fuzzy r-pre-semiopen. (2) Let μ be a fuzzy r-semiopen set. Then $\mu = \operatorname{sint}(\mu, r)$. Thus we have $\mu = \operatorname{sint}(\mu, r) \leq \operatorname{sint}(\operatorname{cl}(\mu, r), r)$. Hence μ is fuzzy r-pre-semiopen.

The following examples show that the converses are not true.

Example 2.4 Let $X=\{x\}$ and μ_1, μ_2 and μ_3 be fuzzy sets of X defined as

$$\mu_1(x) = \frac{1}{4}$$
, $\mu_2(x) = \frac{1}{3}$, $\mu_3(x) = \frac{1}{5}$.

Define $T: I^X \to I$ by

$$T(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then T is a fuzzy topology on X

(1) Since

cl (int
$$(\mu_2, \frac{1}{2}), \frac{1}{2}$$
) = cl $(\mu_1, \frac{1}{2}) = \mu_1^c \ge \mu_2$,
 μ_2 is fuzzy $\frac{1}{2}$ -semiopen. Thus μ_2 is fuzzy $\frac{1}{2}$ -pre-semiopen. But μ_2 is not fuzzy $\frac{1}{2}$ -preopen, because

int
$$(cl(\mu_2, \frac{1}{2}), \frac{1}{2}) = int(\mu_1^c, \frac{1}{2}) = \mu_1 \not\ge \mu_2.$$

(2) Since

int
$$(\operatorname{cl}(\mu_3,\frac{1}{2}),\frac{1}{2})=\operatorname{int}(\mu_1^c,\frac{1}{2})=\mu_1\geq\mu_3,$$
 μ_3 is fuzzy $\frac{1}{2}$ -preopen. Thus μ_3 is fuzzy $\frac{1}{2}$ -pre-semiopen. However μ_3 is not fuzzy $\frac{1}{2}$ -semiopen, because

$$\operatorname{cl}\,(\operatorname{int}\,(\mu_3,\frac{1}{2}),\frac{1}{2})=\operatorname{cl}\,(\tilde{0},\frac{1}{2})=\tilde{0}\not\geq\mu_3.$$

Theorem 2.5

- (1) Any union of fuzzy r-pre-semiopen sets is fuzzy r-pre-semiopen.
- (2) Any intersection of fuzzy r-pre-semiclosed sets is fuzzy r-pre-semiclosed.

Proof. (1) Let $\{\mu_i\}$ be a collection of fuzzy r -pre-semiopen sets. Then for each i, $\mu_i \leq \text{sint} \left(\text{cl} \left(\mu_i, r \right), r \right)$.

Thus we have

$$\bigvee \mu_i \leq \bigvee \operatorname{sint} \left(\operatorname{cl}(\mu_i, r), r \right) \leq \operatorname{sint} \left(\bigvee \operatorname{cl}(\mu_i, r), r \right) = \operatorname{sint} \left(\operatorname{cl}(\bigvee \mu_i, r), r \right).$$

Hence $\bigvee \mu_i$ is fuzzy r-pre-semiopen.

(2) Let $\{\mu_i\}$ be a collection of fuzzy r -pre-semiclosed sets. Then μ_i^c is fuzzy r -pre-semiopen. By (1), $\bigvee \mu_i^c = (\bigwedge \mu_i)^c$ is fuzzy r -pre-semiopen. Hence $\bigwedge \mu_i$ is fuzzy r -pre-semiclosed.

Definition 2.6 Let (X, T) be a fuzzy topological space. For each $r \in I_0$ and $\mu \in I^X$, the fuzzy r-pre-semiclosure is defined by

$$\operatorname{pscl}(\mu, r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \ \rho \text{ is fuzzy} \\ r - \operatorname{pre} - \operatorname{semi closed} \}$$

and the fuzzy r-pre-semiinterior is defined by

psint
$$(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \geq \rho,$$

 ρ is fuzzy r - pre - semiopen.

Obviously $\operatorname{pscl}(\mu,r)$ is the smallest fuzzy r-pre-semiclosed set which contains μ and $\operatorname{psint}(\mu,r)$ is the greatest fuzzy r-pre-semiopen set which is contained in μ . Also, $\operatorname{pscl}(\mu,r)=\mu$ for any fuzzy r-pre-semiclosed set μ and $\operatorname{psint}(\mu,r)=\mu$ for any

International Journal of Fuzzy Logic and Intelligent Systems, vol. 1, no. 1, June 2001

fuzzy r-pre-semiopen set μ .

Moreover, we have the following results.

Theorem 2.7 Let (X, T) be a fuzzy topological space and

$$pscl: I^X \times I_0 \to I^X$$

the fuzzy r-pre-semiclosure operator in (X, T). Then for $\mu \in I^X$, $\rho \in I^X$ and $r \in I_0$

- (1) $\operatorname{pscl}(\tilde{0}, r) = \tilde{0}, \operatorname{pscl}(\tilde{1}, r) = \tilde{1}.$
- (2) $\operatorname{pscl}(\mu, r) \geq \mu$.
- (3) $\operatorname{pscl}(\mu \vee \rho, r) \geq \operatorname{pscl}(\mu, r) \vee \operatorname{pscl}(\rho, r)$.
- (4) $\operatorname{pscl}(\operatorname{pscl}(\mu, r), r) = \operatorname{pscl}(\mu, r).$

Proof. (1), (2) and (4) are obvious.

(3) Since $\mu \leq \mu \vee \rho$ and

$$\rho \le \mu \lor \rho$$
, pscl $(\mu, r) \le \text{pscl}(\mu \lor \rho, r)$ and pscl $(\rho, r) \le \text{pscl}(\mu \lor \rho, r)$.

Hence

$$\operatorname{pscl}(\mu \vee \rho, r) \geq \operatorname{pscl}(\mu, r) \vee \operatorname{pscl}(\rho, r).$$

The fuzzy r-pre-semiinterior operator satisfies the condition of the interior operator.

Theorem 2.8 Let μ be a fuzzy set in a fuzzy topological space X and $r \in I_0$. We have

- (1) $psint(\mu, r)^c = pscl(\mu^c, r),$
- (2) $\operatorname{pscl}(\mu, r)^c = \operatorname{psint}(\mu^c, r)$.

Proof. (1) Since $psint(\mu, r) \le \mu$ and $psint(\mu, r)$ is fuzzy r-pre-semiopen, $\mu^c \le psint(\mu, r)^c$ and $psint(\mu, r)^c$ is fuzzy r-pre-semiclosed. Thus

$$pscl(\mu^c, r) = pscl(psint(\mu, r)^c, r)$$
$$= psint(\mu, r)^c.$$

Conversely, since $\mu^c \le \operatorname{pscl}(\mu^c, r)$ and $\operatorname{pscl}(\mu^c, r)$ is fuzzy r-pre-semiclosed in X,

 $\operatorname{pscl}(\mu^c,r)^c \leq \mu$ and $\operatorname{pscl}(\mu^c,r)^c$ is fuzzy r -pre-semiopen. Thus

$$pscl(\mu^c, r)^c = psint(pscl(\mu^c, r)^c, r)$$

$$\leq psint(\mu, r).$$

Hence $psint(\mu, r)^c = pscl(\mu^c, r)$.

(2) Similar to (1).

Theorem 2.9 For a fuzzy set μ of a fuzzy topological space X and $r \in I_o$, we have

(1)

psint (pscl (psint (pscl (
$$\mu$$
, r), r), r), r)
$$= psint (pscl (μ , r), r),$$

(2)

pscl (psint (pscl (psint
$$(\mu, r), r), r), r$$
)
= pscl (psint $(\mu, r), r), r$).

Proof. (1)Since psint (pscl $(\mu, r), r$) is fuzzy r

-pre-semiopen and psint (pscl $(\mu, r), r$) \leq pscl (psint (pscl $(\mu, r), r$), it follows that psint (pscl $(\mu, r), r$) = psint (pscl $(\mu, r), r$) \leq psint (pscl (psint (pscl $(\mu, r), r$), r). Conversely, since psint (μ, r) is fuzzy -pre-semiclosed and

psint (pscl (μ, r) , r) \leq pscl (μ, r) , pscl (psint (pscl (μ, r) , r), r) \leq pscl (pscl (μ, r) , r) = pscl (μ, r) .

Thus

psint (pscl (pscl (
$$\mu$$
, r), r), r)
 \leq psint (pscl (μ , r), r).

Hence

psint (pscl (psint (pscl (
$$\mu$$
, r), r), r), r) = psint (pscl (μ , r), r).

(2) Similar to (1).

Let (X, T) be a fuzzy topological space. For an r-cut $T_r = \{ \mu \in I^X \mid \tau(\mu) \ge r \},$

it is obvious that (X, T_r) is a Chang's fuzzy topological space for all $r \in I_0$

Let (X, T) be a Chang's fuzzy topological space and $r \in I_0$. Then a fuzzy topology $T^r: I^X \to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise} \end{cases}$$

The next two theorems show that a fuzzy pre-semiopen set is a special case of a fuzzy r-pre-semiopen set.

Theorem 2.10 Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is fuzzy r-pre-semiopen (r-pre-semiolosed) in (X, T) if and only if μ is fuzzy pre-semiopen (pre-semiclosed) in (X, T_r) .

Proof. Straightforward.

Theorem 2.11 Let μ be a fuzzy set in a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then μ is fuzzy pre-semiopen (pre-semiclosed) in (X,T) if and only if μ is fuzzy r-pre-semiopen(r-pre-semiclosed) in (X,T^r) .

Proof. Straightforward.

III. Fuzzy r-pre-semineighborhoods

Now, we are going to introduce the concepts of fuzzy

r-pre-semineighborhoods, fuzzy
 r-quasi-pre-semineighborhoods and investigate their properties.

Definition 3.1 Let x_{α} be a fuzzy point of a fuzzy topological space (X,T) and $r{\in}I_0$. Then a fuzzy set μ in X is called

(1) a fuzzy r-pre-semineighborhood of x_{α} if there is a fuzzy r-pre-semiopen set ρ in X such that $x_{\alpha} \in \rho \leq \mu$, (2) a fuzzy r-quasi-pre-semineighborhood of x_{α} if there is a fuzzy r-pre-semiopen set ρ in X such that $x_{\alpha}q\rho \leq \mu$.

Theorem 3.2 Let (X, T) be a fuzzy topological space and $r \in I_0$. Then

- (1) a fuzzy set μ in X is fuzzy r-pre-semiopen if and only if μ is a fuzzy r-pre-semineighborhood of x_{α} for every fuzzy point x_{α} in μ ,
- (2) a fuzzy set μ in X is fuzzy r-pre-semiopen if and only if μ is a fuzzy r-quasi-pre-semineighborhood of x_{α} for every fuzzy point x_{α} such that $x_{\alpha}q\mu$.

Proof. (1) Let μ be a fuzzy r-pre-semiopen set in X and $x_a \in \mu$. Put $\rho = \mu$. Then ρ is fuzzy

r-pre-semiopen in X and $x_{\alpha} \in \rho \leq \mu$. Thus μ is a fuzzy r-pre-semineighborhood of x_{α} . Conversely, let $x_{\alpha} \in \mu$. Since μ is a fuzzy r-pre-semineighborhood of x_{α} , there is a fuzzy r-pre-semiopen set $\rho_{x_{\alpha}}$ in X such that $x_{\alpha} \in \rho_{x_{\alpha}} \leq \mu$. So we have

$$\mu = \bigvee \{x_{\alpha} \mid x_{\alpha} \in \mu\} \leq \bigvee \{\rho_{x_{\alpha}} \mid x_{\alpha} \in \mu\} \leq \mu.$$

Hence $\mu = \bigvee \{ \rho_{x_a} \mid x_a \in \mu \}$. Since each ρ_{x_a} is fuzzy r-pre-semiopen, μ is fuzzy r-pre-semiopen.

(2) Let μ be a fuzzy r-pre-semiopen set in X and $x_{\alpha}q\mu$. Put $\rho=\mu$. Then ρ is a fuzzy r-pre-semiopen in X and $x_{\alpha}q\rho\leq\mu$. Thus μ is a fuzzy r-quasi-pre-semineighborhood of x_{α} .

Conversely, let x_{α} be any fuzzy point in μ such that $\alpha < \mu(x)$. Then $x_{1-\alpha}q\mu$. By the hypothesis, μ is a fuzzy r-quasi-pre-semineighborhood of $x_{1-\alpha}$. Thus there is a fuzzy r-pre-semiopen set ρ_{x_s} in X such that $x_{1-\alpha}q\rho_{x_s} \leq \mu$. Hence $\alpha < \rho_{x_s}(x)$ and $\rho_{x_s} \leq \mu$. So we have

$$\mu = \bigvee \{x_{\alpha} \mid x_{\alpha} \text{ is a fuzzy point in } \mu$$
 such that $\alpha < \mu(x) \}$
$$\leq \bigvee \{\rho_{x_{\alpha}} \mid x_{\alpha} \text{ is a fuzzy point in } \mu$$
 such that $\alpha < \mu(x) \}$

 $\leq \mu$.

Hence

 $\mu = \bigvee \{ \rho_{x_{\alpha}} \mid x_{\alpha} \text{ is a fuzzy point in } \mu$ such that $\alpha \langle \mu(x) \rangle$.

Since each ρ_{x_a} is fuzzy r-pre-semiopen, μ is fuzzy r-pre-semiopen.

Theorem 3.3 Let x_{α} be a fuzzy point in a fuzzy topological space (X, T) and $r \in I_0$. Then $x_{\alpha} \in \operatorname{pscl}(\mu, r)$ if and only if $\rho q \mu$ for any fuzzy r -quasi-pre-semineighborhood ρ of x_{α} .

Proof. Suppose that there is a fuzzy r-quasi-pre-semineighborhood ρ of x_{α} such that $\rho \dot{q} \mu$. Then there is a fuzzy r-pre-semiopen set λ such that $x_{\alpha}q\lambda \leq \rho$. So $\lambda \dot{q}\mu$ and hence $\mu \leq \lambda^c$. Since λ^c is fuzzy r-pre-semiclosed, $\operatorname{pscl}(\mu,r) \leq \operatorname{pscl}(\lambda^c,r) = \lambda^c$. On the other hand, since $x_{\alpha}q\lambda$, $x_{\alpha} \not \in \lambda^c$. Hence $x_{\alpha} \not \in \operatorname{pscl}(\mu,r)$. It is a contradiction. Conversely, suppose $x_{\alpha} \not \in \operatorname{pscl}(\mu,r)$. Then there is a fuzzy r-pre-semiclosed set η such that $\mu \leq \eta$ and $x_{\alpha} \not \in \eta$. Thus η^c is fuzzy r-pre-semiopen and $x_{\alpha}q\eta^c$, and hence η^c is a fuzzy r-quasi-pre-semineighborhood of x_{α} . By the

Remark 3.4

contradiction.

(1) Every fuzzy r-preneighborhood (r-quasi-preneighborhood) of x_{α} is a fuzzy r-pre-semineighborhood (r-quasi-pre-semineighborhood) of x_{α} .

hypothesis, $\eta^c q \mu$ and hence $\mu \not \leq (\eta^c)^c = \eta$. It is a

(2) Every fuzzy r-semineighborhood(r-quasi-semineighborhood) of x_{α} is a fuzzy r-pre-semineighborhood(r-quasi-pre-semineighborhood) of x_{α} .

The next two theorems show the relation between a fuzzy pre-semineighborhood and a fuzzy r-pre-semineighborhood.

Theorem 3.5 Let x_a be a fuzzy point in a fuzzy topological space (X,T) and $r \in I_0$. Then a fuzzy set μ is a fuzzy r-pre-semineighborhood (Y,T) if and only if μ is a fuzzy pre-semineighborhood (Y,T) if and (Y,T) if and (Y,T) if (Y,

Proof. Straightforward.

Theorem 3.6 Let x_a be a fuzzy point of a Chang's fuzzy topological space (X, T) and $r \in I_0$. Then a fuzzy set μ is a fuzzy pre-semineighborhood (quasi-pre-semineighborhood) of x_a in (X, T) if and only if μ is a fuzzy r-pre-semineighborhood (x, T)

-quasi-pre-semineighborhood) of x_{α} in (X, T^{r}) .

Proof. Straightforward.

IV. Fuzzy r-pre-semicontinuous maps

In this section, we investigate the properties of r-pre-semicontinuity, r-pre-semiopen and r-pre-semiclosed maps in fuzzy topological spaces and obtain the equivalent conditions of them.

Definition 4.1 Let $f:(X,T) \to (Y,U)$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is said to be

- (1) fuzzy r-pre-semicontinuous if $f^{-1}(\mu)$ is a fuzzy r-pre-semiopen set in X for each fuzzy r-open set μ in Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-pre-semiclosed set in X for each fuzzy r-closed set μ in Y,
- (2) fuzzy r-pre-semiopen if $f(\mu)$ is a fuzzy r-pre-semiopen set in Y for each fuzzy r-open set μ in X,
- (3) fuzzy r-pre-semiclosed if $f(\mu)$ is a fuzzy r-pre-semiclosed set in Y for each fuzzy r-closed set μ in X.

Remark 4.2 It is obvious that every fuzzy r-precontinuous(r-preopen, r-preclosed) map is also fuzzy r-pre-semicontinuous(r-pre-semicopen, r-pre-semicopen, r-pre-semicopen, r-semicopen, r-semicopen, r-pre-semicopen, r-pre-semicopen, r-pre-semicopen, r-pre-semicopen, r-pre-semicopen, r-pre-semiclosed). The converses are false by the following examples.

Example 4.3 Let $X = \{x\}$ and μ_1 and μ_2 be fuzzy sets of X defined as

$$\mu_1(x) = \frac{1}{4}, \ \mu_2(x) = \frac{1}{3}.$$

Define $T_1: I^X \to I$ and $T_2: I^X \to I$ by

$$T_1(\mu) = \begin{cases} \frac{1}{2} & \text{if } \mu = \widetilde{0}, \widetilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise} \end{cases}$$

and

$$T_2(\mu) = \begin{cases} \frac{1}{2} & \text{if } \mu = \widetilde{0}, \widetilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly T_1 and T_2 are fuzzy topologies on X.

Consider the map $f: (X, T_1) \rightarrow (X, T_2)$ defined by f(x) = x.

(1) Then f is fuzzy $\frac{1}{2}$ -pre-semicontinuous and not

fuzzy $\frac{1}{2}$ -precontinuous.

- (2) f is fuzzy $\frac{1}{2}$ -pre-semiopen and not fuzzy $\frac{1}{2}$ -semiopen.
- (3) f is fuzzy $\frac{1}{2}$ -pre-semiclosed and not fuzzy $\frac{1}{2}$ -semiclosed.

Consider the map

 $g: (X, T_2) \rightarrow (X, T_1)$ defined by g(x) = x.

- (4) Then g is fuzzy $\frac{1}{2}$ -pre-semicontinuous and not fuzzy $\frac{1}{2}$ -semicontinuous.
- (5) g is fuzzy $\frac{1}{2}$ -pre-semiopen and not fuzzy $\frac{1}{2}$ -preopen.
- (6) g is fuzzy $\frac{1}{2}$ -pre-semiclosed and not fuzzy $\frac{1}{2}$ -preclosed.

The definition of fuzzy r-pre-semicontinuity can be restated in terms of fuzzy r-pre-semiclosure and fuzzy r-pre-semiinterior.

Theorem 4.4 Let $f: (X, T) \rightarrow (Y, U)$ be a map and $r \in I_0$. Then the following statements are equivalent:

- (1) f is fuzzy r-pre-semicontinuous.
- (2) $f(\operatorname{pscl}(\rho, r)) \le \operatorname{cl}(f(\rho), r)$ for each fuzzy set ρ in X.
- (3) $\operatorname{pscl}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{cl}(\mu, r))$ for each fuzzy set μ in Y.
- (4) $f^{-1}(\inf(\mu, r)) \le \operatorname{psint}(f^{-1}(\mu), r)$ for each fuzzy set μ in Y.

Proof. (1) \Rightarrow (2) Let ρ be a fuzzy set in X. Since $\operatorname{cl}(f(\rho), r)$ is a fuzzy r-closed set in Y, $f^{-1}(\operatorname{cl}(f(\rho), r))$ is a fuzzy r-pre-semiclosed set in X.

Since $\rho \leq f^{-1}f(\rho)$,

$$\begin{aligned} &\operatorname{pscl}\left(\rho,r\right) \leq &\operatorname{pscl}\left(f^{-1}f(\rho),r\right) \\ &\leq &\operatorname{pscl}\left(f^{-1}\left(&\operatorname{cl}\left(f(\rho),r\right)\right),r\right) \\ &= &f^{-1}\left(&\operatorname{cl}\left(f(\rho),r\right)\right). \end{aligned}$$

Hence we have

$$f(\operatorname{pscl}(\rho, r)) \le ff^{-1}(\operatorname{cl}(f(\rho), r))$$

 $\le \operatorname{cl}(f(\rho), r).$

(2) \Rightarrow (3) Let μ be a fuzzy set in Y. Then $f^{-1}(\mu)$ is a fuzzy set in X. By (2),

 $f(\ \mathrm{pscl}\,(f^{-1}(\mu),r)) \leq \ \mathrm{cl}\,(ff^{-1}(\mu),r) \leq \ \mathrm{cl}\,(\mu,r)$ Thus we have

$$pscl(f^{-1}(\mu), r) \le f^{-1}f(pscl(f^{-1}(\mu), r))$$

$$\le f^{-1}(cl(\mu, r)).$$

(3) \Rightarrow (4) Let μ be a fuzzy set in Y. then μ^c is a fuzzy set in Y. By (3),

$$pscl(f^{-1}(\mu)^{c}, r) = pscl(f^{-1}(\mu^{c}), r)$$

$$\leq f^{-1}(cl(\mu^{c}, r)).$$

Thus we have

$$f^{-1}(\inf(\mu, r)) = f^{-1}(\operatorname{cl}(\mu^{c}, r)^{c}) \\ = f^{-1}(\operatorname{cl}(\mu^{c}, r))^{c} \\ \leq \operatorname{pscl}(f^{-1}(\mu)^{c}, r)^{c} \\ = \operatorname{psint}(f^{-1}(\mu), r).$$

(4) \Rightarrow (1) Let μ be a fuzzy r-open set in Y. Then int $(\mu, r) = \mu$. By(4),

$$f^{-1}(\mu) = f^{-1}(\inf(\mu, r))$$

 $\leq \operatorname{psint}(f^{-1}(\mu), r) \leq f^{-1}(\mu).$

Thus $f^{-1}(\mu) = \operatorname{psint}(f^{-1}(\mu), r)$. Hence $f^{-1}(\mu)$ is a fuzzy r-pre-semiopen set in X. Therefore f is fuzzy r-pre-semicontinuous.

Theorem 4.5 Let $f:(X,T) \to (Y,U)$ be a bijection and $r \in I_0$. Then the following statements are equivalent:

- (1) f is fuzzy r-pre-semicontinuous.
- (2) $f(\operatorname{pscl}(\rho, r)) \leq \operatorname{cl}(f(\rho), r)$ for each fuzzy set ρ of X.
- (3) $\operatorname{pscl}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{cl}(\mu, r))$ for each fuzzy set μ of Y.
- (4) $f^{-1}(\inf(\mu, r)) \leq \operatorname{psint}(f^{-1}(\mu), r)$ for each fuzzy set μ of Y.
- (5) int $(f(\rho), r) \le f(\text{ psint } (\rho, r))$ for each fuzzy set ρ of X.

Proof. By the above theorem, it suffices to show that (4) is equivalent to (5). Let ρ be any fuzzy set in X. Then $f(\rho)$ is a fuzzy set in Y. Since f is one-to-one,

 $f^{-1}(\inf(f(\rho), r)) \le \operatorname{psint}(f^{-1}f(\rho), r) = \operatorname{psint}(\rho, r).$ Since f is onto,

int $(f(\rho), r) = ff^{-1}($ int $(f(\rho), r)) \le f($ psint $(\rho, r))$. Conversely, let μ be any fuzzy set in Y. Then $f^{-1}(\mu)$ is a fuzzy set in X. Since f is onto,

int $(\mu, r) = \inf(ff^{-1}(\mu), r) \le f(\operatorname{psint}(f^{-1}(\mu), r))$. Since f is one-to-one,

$$f^{-1}(\inf(\mu, r)) \le f^{-1}f(\operatorname{psint}(f^{-1}(\mu), r))$$

= $\operatorname{psint}(f^{-1}(\mu), r)$.

Hence the theorem follows.

Theorem 4.6 Let $f:(X,T) \to (Y,U)$ be a map and $r \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-pre-semiopen map.
- (2) $f(\inf(\rho, r)) \le p \sin(f(\rho), r)$ for each fuzzy set ρ in X.
- (3) int $(f^{-1}(\mu), r) \le f^{-1}(\text{psint}(\mu, r))$ for each fuzzy set μ in Y.

Proof. (1) \Rightarrow (2) Let ρ be a fuzzy set in X. Then int (ρ, r) is a fuzzy r-open set in X. Since f is r-pre-semiopen, $f(\text{ int } (\rho, r))$ is a fuzzy r-pre-semiopen set in Y. Also since $f(\text{ int } (\rho, r)) \leq f(\rho)$,

$$f(\inf(\rho, r)) = p \sin t (f(\inf(\rho, r)), r)$$

 $\leq p \sin t (f(\rho), r).$

(2) \Rightarrow (3) Let μ be a fuzzy set in Y. Then $f^{-1}(\mu)$ is a fuzzy set in X. By (2),

$$f(\inf(f^{-1}(\mu), r)) \le \operatorname{psint}(ff^{-1}(\mu, r))$$

 $\le \operatorname{psint}(\mu, r).$

Thus we have

$$\begin{split} &\inf \left(f^{-1}(\mu), r \right) \! \leq \! f^{-1} \! f \! (\ \inf \left(f^{-1}(\mu), r \right) \!) \\ &\leq \! f^{-1} \! (\ \operatorname{psint} \left(\mu, r \right) \!). \end{split}$$

(3) \Rightarrow (1) Let ρ be a fuzzy r-open set in X. Then int $(\rho, r) = \rho$ and $f(\rho)$ is a fuzzy set in Y. By (3),

$$\rho = \inf (\rho, r) \le \inf (f^{-1} f(\rho), r)$$

$$\le f^{-1} (\operatorname{psint} (f(\rho), r)).$$

So we have

$$f(\rho) \le ff^{-1}(psint (f(\rho), r))$$

 $\le psint (f(\rho), r) \le f(\rho).$

Thus $f(\rho) = \operatorname{psint}(f(\rho), r)$ and $f(\rho)$ is a fuzzy r -pre-semiopen set in Y. Therefore f is fuzzy r -pre-semiopen.

Theorem 4.7 Let $f:(X,T)\to (Y,U)$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is fuzzy r-pre-semiclosed.
- (2) $\operatorname{pscl}(f(\rho), r) \leq f(\operatorname{cl}(\rho, r))$ for each fuzzy set ρ of X.

Proof. (1) \Rightarrow (2) Let ρ be a fuzzy set in X. Then $\operatorname{cl}(\rho,r)$ is a fuzzy r-closed set in X. Since f is r-pre-semiclosed, $f(\operatorname{cl}(\rho,r))$ is a fuzzy r-pre-semiclosed set in Y. Since $f(\rho) \leq f(\operatorname{cl}(\rho,r))$,

$$pscl(f(\rho), r) \le pscl(f(cl(\rho, r)), r)$$
$$= f(cl(\rho, r)).$$

(2) \Rightarrow (1) Let ρ be a fuzzy r-closed set in X. Then $\operatorname{cl}(\rho, r) = \rho$ and $f(\rho)$ is a fuzzy set in Y. By (2), $\operatorname{pscl}(f(\rho), r) \leq f(\operatorname{cl}(\rho, r)) = f(\rho)$.

So we have $f(\rho) \le \operatorname{pscl}(f(\rho), r) \le f(\rho)$. Thus $f(\rho) = \operatorname{pscl}(f(\rho), r)$ and $f(\rho)$ is a fuzzy r-pre-semiclosed set in Y. Therefore f is fuzzy r-pre-semiclosed.

Theorem 4.8 Let $f:(X,T) \to (Y,U)$ be a bijection and $r \in I_0$. Then the following statements are equivalent:

- (1) f is fuzzy r-pre-semiclosed.
- (2) $\operatorname{pscl}(f(\rho), r) \leq f(\operatorname{cl}(\rho, r))$ for each fuzzy set ρ in X.
- (3) $f^{-1}(\operatorname{pscl}(\mu, r)) \le \operatorname{cl}(f^{-1}(\rho), r)$ for each fuzzy set μ in Y.

Proof. By the above theorem, it suffices to show that (2) is equivalent to (3). Let μ be any fuzzy set in Y. Then $f^{-1}(\mu)$ is a fuzzy set in X. Since f is

$$pscl(\mu, r) = pscl(ff^{-1}(\mu), r)$$

$$\leq f(cl(f^{-1}(\mu), r)).$$

onto.

Since f is one-to-one,

$$f^{-1}(\operatorname{pscl}(\mu, r)) \le f^{-1}f(\operatorname{cl}(f^{-1}(\mu), r))$$

= $\operatorname{cl}(f^{-1}(\mu), r)$.

Conversely, let ρ be any fuzzy set in X. Then $f(\rho)$ is a fuzzy set in Y. Since f is one-to-one,

$$f^{-1}(\operatorname{pscl}(f(\rho), r)) \le \operatorname{cl}(f^{-1}f(\rho), r)$$

= $\operatorname{cl}(\rho, r)$.

Since f is onto,

$$pscl(f(\rho), r)) = ff^{-1}(pscl(f(\rho), r))$$

$$\leq f(cl(\rho, r)).$$

Hence the theorem follows.

The next two theorems show that a fuzzy pre-semi-continuous map is a special case of a fuzzy r-pre-semicontinuous map.

Theorem 4.9 Let $f:(X,T) \to (Y,U)$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is fuzzy r-pre-semicontinuous (r-pre-semiopen and r-pre-semiclosed, respectively) if and only if $f:(X,T_r) \to (Y,U_r)$ is fuzzy pre-semicontinuous(pre-semiopen and pre-semiclosed, respectively).

Proof. Straightforward.

Theorem 4.10 Let $f:(X,T) \to (Y,U)$ be a map from a Chang's fuzzy topological space X to a Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy pre-semicontinuous (pre-semiopen and pre-semiclosed, respectively) if and only if $f:(X,T') \to (Y,U')$ is fuzzy r-pre-semicontinuous (r-pre-semiopen and r-pre-semiclosed, respectively).

Proof. Straightforward.

References

- [1] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.
- [2] C. L. Chang, "Fuzzy topological spaces," J. Math. Anal. Appl., vol. 24, pp. 182-190, 1968.
- [3] R. Lowen, "Fuzzy topological spaces and fuzzy compactness," *J. Math. Anal.* Appl., vol. 56, pp. 621-633, 1976.
- [4] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness: Fuzzy topology," *Fuzzy Sets and Systems*, vol. 49, pp. 237-242, 1992.
- [5] R. N. Hazra, S. K. Samanta, and K. C. Chattopadhyay, "Fuzzy topology redefined," *Fuzzy Sets and Systems*, vol. 45, pp. 79-82, 1992.
- [6] A. A. Ramadan, "Smooth topological spaces," Fuzzy Sets and Systems, vol. 48, pp. 371-375, 1992.
- [7] S. J. Lee, E. S. Park, and E. P. Lee, "A generalization of a lattice fuzzy topology," *Comm. Korean Math.* Soc., vol. 12, pp. cjk-girls. net 113--126, 1997.
- [8] Shi-Zhong Bai, "Fuzzy pre-semiopen sets and fuzzy pre-semicontinuity," *Proc. ICIS'92*, pp. 918-920, 1992.
- [9] Shi-Zhong Bai and Wan-Liang Wang, "Fuzzy noncontinuous mappings and fuzzy pre-semi-separation axioms," Fuzzy Sets and Systems, vol. 94, pp. 261-268, 1998.

Seok Jong Lee

His research interests are fuzzy topology, general topology and category theory.

Phone: +82-43-261-2249

Fax : +82-43-274-9619

Email : sjlee@chungbuk.ac.kr

Youn Suk Eoum

Her research interests are fuzzy topology and general topology.

Phone : +82-19-264-3234

Fax : +82-43-274-9619

Email : setojs@orgio.net