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ABSTRACT

We introduce cascade products, wreath products, sums and joins of 7L-finite state machines and investigate their
algebraic structures. Also we study the relations with other products of TL-finite state machines,
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1. Iniroduction

Since Wee [9] in 1967 introduced the concept of fuzzy
automata following Zadeh [11], fuzzy automata theoty
has been developed by many researchers. Recently
Malik et al. [4-7] introduced the concepts of fuzzy finite
state machines and fuzzy transformation semigroups
based on Wee's concept [9] of fuzzy automata and
related concepts and applied algebraic technique. In this
paper, we introduce cascade products, wreath products,
sums and joins of 7TL-finite state machines that are
generalizations of crisp concepts in algebraic automata
theory and investigate their algebraic structures. Also
we study the relations with other products of TL-finite
state machines.

For the terminology in (crisp) algebraic automata
theory, we refer to [2].

2. Preliminaries

We let L denote a complete lattice that contains at
least two distinct elements. The meet, join, and partial
ordering will be written as /\,V, and <, respectively.
We also write 1 and 0 for the greast element and least
element of L, respectively.

Definition 2.1 A triple M= (Q,X,r) where @ and X
are finite nonempty sets and ¢ is a L-subset of
R*X®Q, e, ris a function from @xXx@Q to L, is
called an L-finite state machine.

Let M=(Q,X,r) he an [-finite state machine.
Then @ is called the set of states and X is called the
set of input symbols. Let X" denote the set of all
words of elements of X of finite length with the empty
word A.
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Definition 2.2 [8]. A binary operation 7 on L is called
a tnorm if

(1) Na, 1)=m=a

(2) Ta, b)=< T(a, ¢) whenever b<c¢,

(3 Ta, b= T(b, a),

4y T(a, T(b, ) = T(Ta, b), ©

for all «,8,c=L.

Definition 2.3 [10] () A fnorm T on L is sad to he
vV -disgibutive if T(a, bV o) = Tla, )V T(a, ¢) for al
a, b ce L.

(i1} T is said to be positive-definite if 7(a, b) >0 for
all a, b= L\A{0}.

One gets immediately 700,4) =0 and T(a,H<a/\b
for all «, be L. Throughout this paper, 7 shall mean a
positive—definite and V-distributive #norm on L
unless otherwise specified.

We will denote T(ay, T(as. ", T(&nz, T(@a_1.am)
---)) by 1(ay,--.a, where a;--,a,=L.

Example 2.4 Let L=1[0,1]1x{1}. Define a partial order
< on L by for a=(a;,1),b=(b,1)=L,a<bh if
a1 < by, Define T(a, &) = (ay,b1,1) where a=(a; 1),
b=(b. 1)=L. Then T is a positive-definite and V
—distributive #norm on L.

Definition 2.5 Let M= (@, X,r) be an L-finite state

machine. Define 77 :Q@xX x@Q—L by
. (1 ifg=2p
T P,

(a1 a,. D
= V{T(d(p.a.n), o(ry,aqs,vs), -,
Z-(rnwléran—l, rn—l); Z'(?’ﬂ._] 2 @ n Q))ITZE Q}

where p,¢e@ and @, v, 2,=X. When T is
applied to M as above, M is called a TL-finite state
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machine(briefly, a TL-fsm).

Remark. In Definition 25 if we let T=A and
L =10,1], then the concept of a TL-fsm is the concept
of {7].

Hereafter a fuzzy state machine will always be
written as a TL-finite state machine because a fuzzy
state machine always induces a TL-finite state machine
as in Definition 2.5.

Definition 2.6. Let My=(¢, X, ) and
M,= (Qy, X,, t;) be TL-finite state machines. Let
Then the pair
(a,8 is called a 7TL-finite state machine homomor-

phism (which is written by (e, 8 if

a Qi — ¢, and B: X,— X, be mappings.

o(p, 2,0) < wo(a(P), (@), a(d), p,a= G, as X

The (a.p) M—M; is
isomorphism if @ and £ are bijective respectively.

Definition 2.7 Let
M,=(Q,, X5, ) be

£ X,—X, is a function and 7: @y— @&y is a surjective
partial function such that i (7(p), a. (@) = 3 (p, &(a), @)
for all p, ¢ in the domain of 7 and a= X, then we say
that (7,8 is a covering of M; by M, and that M,
covers M; and denote by M,<M,. Moreover, if the

inequality always turns out equality, then we say that
(5, & is a complete covering of M; by M; and that M,

homomorphism called

M =(Q, X, 1) and
7L -finite state machines. If

completely covers M; and denote by M, < . M,.

In Definition 2.7, we abused the function & We will
write the natural semigroup homomorphism from X5 to
X, induced by & by & also for convenience sake. We
give an example that is elementary and mmportant.
Example 2.8 let M=(Q X,0) be a TL-finite state
machine. Define an equivalence relation ~on X by
a~bif and only if (p,a,q) = o(p,b,q) for all p,q=Q .
Construct a fuzzy finite state machine
M, =(Q,X~,r™) by defining r (p.[al,q) = (3, a q).
Now define & X—X/~by &a)=[a]l and =1,
Then (7,9 is a complete covering of M by M; clearly.

Proposition 2.9 Let M;, M, and M; be TL-finite state
machines, I My <M, [resp. M;=,M,] and M,=< M,
[ My< M), then M;<M; [ M) < .M;).

Prodf. It is straightforward.

3. Several products of TL-finite
statemachines

Several products of finite state machines are in [2].
Some of these products have been fuzzified in [1], [3]
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Definition 3.5 Let

and [5]. In this section we introduce cascade products,
wreath products, sums and joins of 7TL-finite state
machines.

Definition 3.1. Let M= (@), X1, ) and

. My=1(@Q;, Xz, ) be TL-finite state machines. The

cascade product M, wM; of M; and M, with respect to

w: @xX,—X, s the TL-finite state machine
(@1 X @2, X, 1y07;) with
(ry07)( (D1, P3), B, (qy, q2))
= T(r(p), (P2, 0).q1), (s, b,¢2))
where (p1,p)= Q% @, beX,
and (g1, ¢2) € @y % Qs
Definition 3.2 Let M =(Q, X1, ) and

M;=(6,, Xy, ;) be TL-finite state machines. The
wreath product M; « M, of M; and M, is the TL-finite
state machine (@ x @y, X% X X5 1) = 15) with

(71 = w)((pr, p2). (11 0), (a1, a2))
= T(ry (o1, Apg), a1). 7o( D2, b, @3))
where (pp)=Q % Qs b=X,, (aq1,q) = Q% @, and
fEXlQe.

Definition 3.3 Let M= (@, X1, 1) and
M; = (6, X, ) be TL-finite state machines, where
QN@Q=0 and X;NX,=®. The join MV My of
M, and M, is the TL-finite
(UG, X;UX,. 1V ) with

state  machine

n(p.a,q) if (ha,deEeQxXIx@
(nVt)paan =1 nbaq if (haadeQxXyxQ,

0, otherwise

Definition 3.4 Let M= (@, X, ) and
My = (@, X;.13) be TL-finite state machines, where
NQ=o and X;NX,= @. The join" M\V*M, of
M, and M, is the TL-finite
(U@, X\UX,, 1,V with

state  machine

(V)b a. 9
n(p. a9 if (pa,. @ = xX; Xy
w(pa.q if (a,sxXyxy
1if (58,0 (@ XXX QU (Q; x Xy X Q)
0. otherwise

M= (@.X, ) and

My = (Qy, X5, ) be TL-finite state machines, where



QMN&y=@. The sum M;+ M, of M; and M, is the

Tr.~finite state machine (&, U Qu, X% Xy, 7; + o) with
n{p,a, 0 if =@

(r)+ 1), (a.8),0) = | mpbaq if pg= @y

0, otherwise

Definition 3.6. Let M= (Q, X1, 70) and
My= (&, X;,72) be TL-finite state machines, where
QN Q= @. The sum” M, +"M, of M, and M, is the
TL finite state machine (@U@, X1 % X5, 1) + o) with

alp a0 if pas@

(0, b,0) if p,q=Q,

1if (p,0) =(@ x @U(Q X Q)

(r +"o)(0,(a, b),0) =

0, otherwise

4. Associaiive properties

Proposition 4.1 Let M,, M, and M; he TL-finite state

machines. Then the following are hold :
(1) (Ml/\Mz)/\Mg = Ml/\(Mz/\Mg).
(11) (MlxMz)nglex(ngMg).

Progf. Tt iz straightforward.

Now we prove that wreath product, join and sum of
TL-finite state machines are associative.
Theorem 42 Let M, = (@, X1, 1),
and My = (Qs,X;.1t3) be
Then the following are hold :
(1) (My = M) = My=M, - (M, - M)
(i) (M, M)\ My= M\ (M, My), where
NN =0 and X;NX;NX;=0
(i) (M, + M) + My =My + (M + M),
where MM Q= @

PT’OOf. (i) Let e: (Q1 * Qg) K Qg O % (Qg X Qs) be the
Then 2 is a bijective mapping. Let
gzing‘YXXg’*Xg be the

M, = (Qz,Xz, Tz)

TL—finite state machines.

natural mapping.
glinQ”XXg—*XlQ' and

natural  projeclion mappings. Given a  mapping
F@—oX"xX; let fi=gfand f,= g * f Define
8: (XlQ.v w Xg) °] % ){3 — XIQZX 2 % (XZQJ % XB) by

BUS, b)) = (h, (fy, b3)), where
R Dy, p3)) = Filps) o).
injective. Let (w, (v, by)) & X, 2 Gy (XZ("1 % Xy)
w: QX" ™ by w(hy) = (2", w(py) where

Then & (z, by)) = (w, (v, by)) and

h: @%@ —X, by
‘We can easily show that 2 is
and

define

v p3) = (03, y).

Producis of 7L-Finite State Machines

thus A is surjective. Now

(71 » (73« 7)) al(py, p2), pa), BU(S, by)), ({1, 22), 42)))
(73 » 2)((D1, (B2, 220, (B, (fo, 8)), (a1, (G2, @3)))
t3)((pa, £3), (2, B3), (g2, 22)))
= To(p, Dy, 13),q0). T(xolpz, o £3), a2), 7a( 3, b3, 42)))

= (7_-1.1

= T(ry(py, (P2, 23).q1), (72 *

= T(T(ri{pr, h(py, p3). a0), ol P, FolBa), 42)), Tats,s B3, 43)))
= T(T(e(pr, AD3)(B2), @1, ol D, Fa(03), @2)) . To( Dy, By, a9)))
= T((ry = t)((p1, 12), (Fi(2s), fo£3)), (@1, 42)), 73, b3, @)D
= T((zy = e)((D1, 02), A0, (a1, @2)), 73, by, 43)))

since (7 (3).72(p3)) = A p3)
= ((z; » ) » )(((1, 22), 1), (£, B3), (1. @2), 25)))

(i) Let @ be an identity mapping on @,U&;U @5 and
B be an identity mapping on X,UX5UX5 Then (a,h)
be a required isomorphism.

(iii) Let e be an identity mapping on @,U&QU @,
and B (X X Xy) % X=X x (X X X;) be the natural

mapping. Then (a,8) be a required isomorphism.

Remark. V" and +* are not associative operations.

5. Coverings

and
Then

Proposition 51 Let M= (@, X, 1)
My = (8, X5, 2) be TL-finite state machines.
1 MIAM;=< My x M, X=X,
(1) MyeM;< .M+ M.

where

Progf, We only prove (ii).

() Let &X,—X%xX, be a function such that
Elxs) = (& (x9), E(x3)) where xy=X,, &(xy: Q— X I8
a function defined by £(x)(p2) = w(ps, &(xy)) and
& =1y, And let Then for each
(1.0, (g1, q) = @ ¥ @ and xy= X5, we have

7= 1 G @

()7 (By, £2)) . %, 7 (a1, @2)))
= (rywr)((p1, p2), &2(x2), (a1, @)
= T(r; (D1, (b2, Ex(x2)),q1), 72 2, Ex(x2). G2))
= T(r1(p1. &:(22)(22), a1), 7o B2, §a(x2) . @)
= (r1° ({1, 02), (E1(w). &x(2)) (21, @)
= (1 » (D1, 1), Ealx2), (a1, @2)).
Hence

leMziMl " Mz.
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Proposition 5.2 Let M =(6,,X.t1) and
M, = (§;,X,, 1) be TL-finile slale machines such that
N@Q=0 and X;NX,=@. Then

) M, <M\ M,

(i) Mi<M\N"M,
Proof. We only prove (i).
Let @U@~ be a partial surjective function
defined by 9(py =P, Where nee.  And
& X;—X;UX; be the natural projection. Then (#,8) is
a required covering of M, by M,V M.

Theorem 53 Let M, = (Q,, X, 7)) and M, = (@, X,19)
be TL-finite state machines. Then

@) MV Mo< M\ M.

() M+ My<M, +" M.

Proof. (i) Let 7 and £ identity mappings on @,U @,
and X;U X, respectively.
Case (a) ' If (p,a,q €@ x X, % @y, then
(V) D), a, @) = r1(p, a, @) = (1, V" 1,)(p,£(a), q).
Case ) 1 If (p,a,q =@ x X% @, then
(o Ve)((D),a, @) = t(p, a, @) = (2, 1)(p.&(a), ).
Case (c) : If (p,a,9) (@ x X1 x @)U (@ xX;xQp),
then (7, Vo)((p), 2. 2(a) = (r; Vr)(p,a,0) =0<1
= (V' n)(p,&a), @)

(11) The proof is similar to the proof of (i).
Theorem 54 Let M= (Q.X.1), Moo= (s, X, 1)
and M;= (Qs, X, r3) be TL-finite state machines such
that M; < M,. Then

@ MN M;< M M.

() MV My< M\ " M,

(i) M, + My < My + M.

(v) My~ My< My +"* M,

Proof. We only show that (i) holds. Since M; < M,, there

exist a partial surjective mapping 7 @:—¢; and a
mapping & X,— X, such that
o (D), a, (D) < 13(p, & @), @).
i . _ o, [ pif p=E@y
Define 7': Q,U&;— @U@ by 77(1))—{ ) i pe O,
a if ae X,

and &: XUX;—X,UX; by E’(a)={ &a) if peX)

Then % is a partial surjective mapping and & is a
mapping. Show that (V)7 (9, e, 7 ()= (2V 1)
(p,&(a),q), where p,qe @U@Q; and a= X UX;.

D If pg= @y and e= X, then
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(n V(' (9, a, 7 (q) =), a, %)
< r(p, 8a), @
=(mV5)p§(a),0

(ii) If p,g=Q; and a= X,, then

(nV ) (9),a,7(q) = z:(p,a.9)
=13(p, & (a), @)
=(pVa)p&(a),

(ii) In all other cases

(5V 27 (8, 2, 7/(2) =0

(V)8 (a),q
This completes the prool.

Theorem 55 Let M= (@, X1, 1), M= (6y, X5, 13)
and M;= (@;, X3, ) be TL-finite state machines such
that M, < M,. Then

D Mo MMy M

(i) My My<Ms - My

Proof. Since M, < M,, 70 Q=
& X1 — X, such that n(z(py), ar, 2 g2)) < rolpy, Ea), qz).

() Define 7:@QX@—@ix@ by 7((p, )=
(0. p) and define &: XX X;—X3'x Xy by
E((f,as)) = (£~ f,a3). Then

there exist and

(1 = ) (o, £3), (f, a3), 7 (a2, @3))
= (71 ° z)(((p2), 99, (, 23), (5(a), a3))
T(ri (o p2), A £a), 7 @), va3, az, qa))

W

T(Tz(ﬁz, (E ° ﬁ(pd)’ Qz)sfs(ﬁ's, az, QJ))

= (zy = 13)((D2. 13), E (S, a3)), (a2, a3))
(i) Define #:Q3xQ—QxQ by 7 ((ps, 1)) =
(b5, 7(p)) and define &:XIx X=X xX, by

E((f, @)= (F- 5,ap)). Then

(3 * o7 (D3, 09), (F, @), 7 (a3, 22))

(r3 = v)((p3, 7 22)), (f, @1), (a9 @2)))
T(e3(pa, La(09)), a3), vl 2 (D2), a1, 7(@a)))
T(r5(p3, (f = 9(B), an), a2, Ear), a2)
(3 = t2)((P3, 22). & ((/, @), (g3, a2))

This completes the proof.

Theorem 5.6 Let M) = (@, X, 1), My= (D, X5, 1)
and M; = (Qy, X3, ;) be TL-finite state machines such
that @M Q3= @. Then

(1) My - (M M) < (M - M)N (My - Mz) where

Wl

XgﬂXg =0
(1) My« (MN*Mp)< (M, - M)\ " (My - M;) where
szX:% =0



(111) Ml s (Mg + Mg)ﬁc(Ml ° Mz) + (Ml s Mg)
(1V) Ml ° (Mg +*M3)£(Ml ° Mz) +*(Ml ° MB)

Proof. We only prove (i) and (iii).

) Recall M, - (M;V M) = (@ x (QUQIX™ %,
X (X, UXy), 1 ¢ (15Vey) and (M) - M)V (M = My) =
((Q % @)U (Q X Q). (X x XU (X x X3), (1) * )
V{(r - ry)).  Define 7:(Q % QU@ X @) —Q, %
(QUQ) by 7((50)=(p,@. And define & X"
X (X, U Xa)— (X% x X)) U (X x X3) by

(f| Qe b) if bEXg

H b))={ (Flo, b) if beX;

Then

7y = {2V )7, 1), O, D), % a. ')
= 7, = (Vo)(p, )./, B).(g.4'))
T(r(p, KE), @) (Vo)X b))
{ Ty (0. K0), Q. 02(d, b, &N (0. b, @) E QX XaX @y

Mo, A1), @, 05t 0, 00).(, b, ¢) EQa X Xy X €y
0, otherwise
(r1° X0, 0),(F1 .8, (g, ¢ ), (¥, b,¢) EQyx Xy x &y
= [ (ry « (5,00, 0. 8. (@, ¢ N, (5, b, 4) = QX X% Qs
0, otherwise

= (o » e)Vin = o)), 0),(e,¢))

(ifi) Recall My + (My+ Ms) = (@ X (@ UQy, X "% x
(Xox Xy, (mp+ ) and (M » Mp) + (M = M) =
((Q) X QU X @), (X" % X)X (X ¥ x Xa), (1 » 1)
+ (r; * ). Define 7: (@) x @)U (@ X Q)= Q1% (&,
UQy) by #((pa) = (p,q). And define & X *7%x
(X, x X.’-s)"’(XlQ2 X Xg) % (X1Q3 x X3) by &((f, (b)) =
((#1 g, 82), (A1 g.53) Then

7, » (73 + w0, £7), (F, (b2, 83)), wa. ')
ty » (g + (5, 1), (e, B9)), (g @ D)
T (0, A7), @), (ro + 138, (b2, B3). ')
T, A0, @, 00 ba, @) 0 d €@
T (p, A2, @), ws(#, b3, g)), 0 4 =6
0, otherwise

{ (r1 = o)X, 0, (Fl g, 0. (gD, P 6 =Qy

[

I

I

]

(r1 = (5,00, (fl g, B3), (2, D). 0, 4 =@
(), otherwise

= ((7.—1 °
((71° )+ (n

) + (71 = 25,0, ((f] @ ), (A 0, 3)), (2, @)
= )X (p, 7, E(f, (b2, ba)), (g, 4)

This completes the proof.
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