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ABSTRACT

We construct scveral supercategories of ACHY (ol approach Cauchy spaces) and AULim (of approach uniform limit

spaces) and investigate the relation among them.
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1. Introduction

Uniform limit space was introduced by C. H. Cook and
A. R. Fischer [2] as a generalization of uniform space
and a slght modification of the definition of uniform
limit space was proposed by O. Wyler [15] so that the
resulting category ULim satisfies ‘cartesian closedness’
[6]. Endowing the underlying set of a uniform limit
space with the set of all Cauchy filters one obtains a
Cauchy space which has been studied as a useful tool
for constructing completions. In 1987, since it was shown
that Cauchy spaces form a cartesian closed topological
category CHY but quofient maps in CHY are neither
countably productive nor hereditary [1], the question
arose whether it was possible to embed CHY into better
behaved supercategories. In [12], CHY was shown to be
a finally dense, bireflective subcategory of topological
universe FIL of filter-merotopic spaces which was
introduced by M. Katétov [4] and could be implicitly
cmbedded into ULim as a bicoreflective subcategory [5).
By omitting some of the axioms for uniform limit spaces,
the notions of preuniform convergence space, Semiurni—
form convergence space and semiuniform limit space
were introduced and based on the relation between
uniform limit space and Cauchy space, the notion of
semi-Cauchy space was introduced as the object of the
bicoreflective hull of CHY in ULim [13, 14]. The
category SCHY ol semi—Cauchy spaces is regarded not
only to be better behaved than CHY hbut also to preserve
more structure of CHY than any other categories.

In [10], the notion of approach structure was
introduced by means of various axiom systems and by
the notion of ‘distance’ between a point and a set, metric
spaces and topological spaces can be viewed as entities
of the same kind. In [8] and [9], the nations of approach
Cauchy structure and approach uniform limit structure
were introduced by measuring smallness of the members
which quantify the notions of Cauchy structure and
uniform limit structurc, respectively. Now, we generalize

BYA 20014 19 159
sSRdX 2001 28 9

=

166

approach uniform limit space, approach Cauchy space.

the notions of approach Cauchy structure and approach
uniform limit structure and show that these quantified
structures yield supercategories of ACHY (of approach
Cauchy spaces) and AULim (ol approach uniform limit
spaces) which preserve the classical relation among
supercategories of CHY and ULim.

For any set X, we denote the set of all filters on X
by F(X). The filter generated by a filter basis B is
denoted by [B]. In particular, the point filter generated
by the set {x} is denoted by x. If F, G €F(X), then F
XG=[{FXG|FEF, GEGI. If £ X— Y is a map and
FeF(X), then F(F)=[f(F) | FEFI,IF @, F=F(XX
X), then @ T=[{U- V| Usd, Ve?}], provided that
every U V={(x,y)eXx Y| 3z X such that (x,z)
= U, (z,v) e V} is empty.

A filter (-merotopic) space [4] is a pair (X, ¢), where
X is a set and ¢ is a subset of F(X) such that the
following conditions are satisfied :

(FIL1) xec for all x= X,

(FIL2) if F=c¢ and F <G, then G ¢

A filter space (X,¢) is called a semi-Cauchy space
[13] if the following condition is fulfilled :

(SACHY) If FeF(X) is such that there exists finite
family ()}~ in ¢ with rj (FX F) < FXF, then Fec.
A filter space (X, o) is called a Cauchy space if the
following condition is satisfied : (CHY) if &, GEcand 3
FVG exists, then N GEec.

Given filter spaces (X,¢ and (Y,¢), a map
£ X—7Y is called cortinuous il FE ¢ implies F(PEC.

Let FIL denote the category of f{ilter spaces and
continuous maps and denote the full subcategory of FIL
consisting of all semi-Cauchy (Cauchy) spaces by
SCHY (CHY), respectively.

A preuniform comvergence space is a pair (X, L),
where X is a set and L is a subset of F(X*X) such
that the following conditions are satisfied:

(ULiml) xx x=L for all x=X,

(ULim?) if @=L and @< ¥, then ¥eL.

A preuniform convergence space (X,L) is called a
semiuniform corwergence space if the following condi-



tion is satisfied:

(ULim3) ¢eL implies @ ‘e L.

A semiuniform convergence space (X, L) is called a
semiuriform limit space if the following condition is
satisfied:

(ULimd4) if @, ¥ L, then ¢\ ¥e L.

A semiuniforn limit space (X, L) is called a wniform
limit space if the following condition is satisfied:
(ULim5) if @, %=L and 3,0 ¥, then ¢~ ¥=L.

For any preuniform convergence spaces (X.L) and
(Y,L), a map fX— Y is called uniformly continuous
it @=L implies (fxH @<L’

Let PUConv denote the category of preuniform
convergence spaces and uniformly continuous maps and
SUConv (SULim, ULim) denote the full subcategory of
PUConv consisting of all semiuniform convergence
(semiuniform limit, uniform limit) spaces, respectively.

2. The category AULIm

Definition 2.1 (1) An agpprogch preuniform convergence
(shortly, APUConv-) space is a pair (X, ), where X is
a set and 7:F (X x X)—[0,e] is a map such that the
following conditions are satisfied:
(AULim1) # xx %) =0 for all x=X,
(AULIm2) if @, Fef(XxX) and
> D) = 9(P).

(2) An approach preuniform convergence space (X, 7) 18
called an approach 'semiuniform comvergence (shortly,
ASUConv-) space if the following condition is satisfied :
(AULIm3) n(@ ™) = (@) for all #=F(XXX).

(3) An approach semiuniform convergence space (X, 7)
is called an approach semiuniform limit (shorily,
ASULim-) space if the following condition is satisfied :
(AULImd) #( 0N O = o @V 7(®) for all @, ¥Fe FXXX).
(4) An approach semiuniform limit space (X, 7 is
called an approach uniform limit (shortly, AULIim- and
in [9], ultra approach uniform convergence) space if the
following condition is satisfied:

(AULImS) if @, ¥=F(XXX) are such that 3,0 ¥,
then #(@ - W)= 5(@)V 7 P).

Definition 22 Given APUConv-spaces (X,7 and
(Y,7), amap /- X— Y is called a uniforrn contraction
if 7((FxAD) < 9@ for all deFXXX).

Let APUConv denote the category of APUConv
-spaces and uniform contractions and ASUConv
(ASULim, AULim) denote the full subcategory of
APUConv consisting of all ASUConv(ASULim, AULim)
—spaces, respectively.

Recall from [9] that AULim contains ULim as a
bireflectively and hicoreflectively embedded full subcate-
gory and an approach uniform limit space (X, 7) is a
uniform limit space i#f »F (XX X)) €{0,}. Analogously,
we have the following.

o<, then
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For any preuniform convergence (semiuniform conver-
gence, semiuniform lmit) space (X, L), the map 7.:F
(X*X) —10, 0] defined by

0 for @=L
oo for Q&L

is clearly an APUConv(ASUCoenv, ASULim)-structure
on X, respectively. Furthermore, for any preuniform
convergence spaces (X,1) and (Y,L’), a map
F(X,L)—(Y,L") is uniformly contimious iff 7 (X, 7;)
—(Y,71) So PUConv
(SUConv, SULim) is embedded as a full subcategory in
APUConv (ASUConv, ASULim), respeclively.

Proposition 23. An APUConv(ASUConv, ASULim)
-space (X, 7) is a preuniform comvergence (semiuri-
form convergence, semiuniform limit) space, respectively

iff p(FAX®X)) (0,00

Theorem 24. The category PUConv (SUConv,
SULIm) is a bireflective and bicoreflective subcategory
of APUConv (ASUConv, ASULim), respectively.

Oy 0) = {

is a uniform contraction.

Theorem 2.5. The category APUConv is a topological
construct.

Prodf. To show that the category APUConv is initially
complete, take any source

(X—L(X,-, 7)) i=; in APUConv. Then the map 7 F
(X % X)—10, 1% defined by

o= 0)= 5F 7,((f, x ;) (@)

ig the initial approach preuniform convergence structure
on X and the remainder is trivial.

Since [inal structure is the dual concept of initial
structure, Theorem 2.5 guarantees the existence of final
stmuctures in APUConv. Here, we present the explicit
form of the final APUConv-structure,

Proposition 2.6. For any sink ((X;,7) -2 X)je; in
APUConv, the map 7 F (X x X)=»[0, «] defined by

0 if 0= xxx for somexeX
KOV = inf{z(0) | (£, xF)@)L O for some j&],@,€ F(X;>x X )
olherwise

is the final approach preuniform convergence Structure
on X.

Propostion 27. The category ASUConv is a
bireflective and bicoreflective subcategory of APUConv.
Proof. Note that (@™ D7 1=a and (Fx M) = ({fx5H
(@™ 7! for any @eF(XxX) and a map f on X.
Then it can be easily proved that for any approach
preumiform convergence space (X, ), the ASUConv

—bireflector is (X, 7 _lx (X, 7., where 7,0 F(X xX)—
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[0, =] is defined by

O 7,(0) = fOA@ ™)

and the ASUConv-bicoreflector is (X, 7o) (X, ),
where 7.' F(X % X)—[0, ] is given by

P (D) = oDV 7D 7).
Proposition 2.8. The category ASULim is a bireflective
subcategory of the category ASUConv.
Progf. For any approach semiuniform convergence space
(X:7), the ASULim-bireflector is (X, 7) —=» (X, np),
where 7,1 F(X x X)—[0, o] is defined by

]
7(0) = inf{ up 7(0) | (8} 1 & F(X X X) such that (o< o).
J= 7

Proposition 2.9. The category AULim is a birgflective
subcategory of ASULIm.

Progf. For any approach semiuniform limit space (X, ),
the AULim-bireflector is (X, 7) —%» (X, (7s),), Where
ng: F (X x X)— [0, o] is defined by

750 = inf{ sup K@) | (0)-, S F(X x X) such that
¢1 o sar o Q)n< ¢}

It suffices to show that (7s). satisfies (AULIm5). Let

@, = 7(X % X) be such that @ - ¥ exists and take

any (@)%, (FT) 1 EF (X x X) such that

(0 0, (\ T ¥ Since 0+ ¥ exists and

there exists at least one pair of indices (7,7 such that
@, ¥, exists. Take all such pairs and rearrange by
k=1,., 1 Then

Q- T D1@"'= v,

75 @y = T < 5s( @)V 75( W)  for all
k=1,-,1, we have

and since

25Pp = T < %1;{113 (750N 75(T))
= (%ﬁ% 7s( d’k)) \4 (%ﬁl? 7s( wk))
= (s;ﬁgﬂ?s(‘pa)\/ <S£IIJ 75( 43";‘))

and consequently (7s5) (@ < T)< (75) (PN (73) L T).
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Theorem 2.10. The categories ASUConv, ASULim
and AULim are fopological constructs.

Progf. This is an immediate consequence of Theorem 2.5
and theorermn A.10 in [3].

For any APUConv-spaces (X, and (Y,7), let
C(X,Y) be the set of all uniform contractions from X
to Y. Then for any 0=F(X xX) and O=F(C(X,Y)
% O(X,Y), the sel {H(A}:A=0,Hes®, where
HA)={(Ia),Eb) | (a, ) =A,(h,B)=H for each
Acs @ and H=6, forms a filter basis on Yx Y. Let
A(@) be the filter on Y X Y generated by above and
define a map 7"F (C(X, V) x (X, ¥))—[0, e] by

G- 7'(0) = inf L(0),

where L(@) ={e=[0,] | 7(6(D) =79 @)V a for all
Pe F(X x X}

Propostion 2.11. »" is the coarsest APUConv-structure
on C(X,Y) with respect to which the evaluation map
er: XX C(X, V)= Y defined by (x,p—Ax) Is a
uniform contraction.

proof. Clearly, 7" is well-defined. (AULiml) follows
from the inequality

7 ((Fx AD)) = 7 ((Fx H(D) < o( @)

for all feC(X,Y) and @<= F(X x X). Since it holds
that G<E In FOX,VxCX, V) imples
ODCE(P in F(YxY) for all @eF(XxX),
(AULim?2) is immediate and consequently 7" is an
APUConv-structure on C(X, Y). Since for any ¥efF
(X x AX, ) x(Xx X, 1))
7((evx et)(®) <7 ({evx er)({m X 7)(F) X (73 X w)(P)))

= 77’((71'2 x 71'2)( o) (771 x 71'1)( )

< 7((ay X )V 7" ({7 % 2)( D)

= (px 7)(¥)
where 7; and m are the canonical projection maps from
Xx X, V) to X and C(X,Y) respectively, the map
e XX C(X, ¥)— Y is a uniform contraction with respect
to 7. Let 7, be another APUConv-structure on

C(X,Y) with respect to which ev is a uniform
contraction. Then for all Qe X xX) and @=F
(C(X, ) x (X, 7)), we have

7 ((evx er)(@x @) = 7 (8(@) < 9p(B)V 7.( D)

and consequently 7.(@ e L(®) for all @=F(C(X,Y) %
CX, ). So 77(0)<9(6) for al O=F(C(X, V) x
(X, V) and hence we have the result.

Proposition 2.12. Let (X, 7,(Y,7) and (Z,%) be
APUConv-spaces and let [ XxZ—Y be a uniform
contraction. Then there exists a unique uniform
contraction £ Z—C(X,Y) such that ev: (1xx #) = £



procf. Define a map % Z—C(X, V) by

2= X -Y
x = H2)(x) = Ax,2).

zeZ, Ha)=Ff: (lxx[zD),

[z]: X—Z is a map defined by x—z for all x= X, Since
the identity map, the constant map and the composition of
uniform  contractions  are  uniform  contractions,
A2 e O(X,V) and the map 7 is well-defined. Further-
more, since for any 0= F(X x X) and T=F(Z < Z), we
have

Then for each where

7 (((Fx DN = 7 ((Fx HDx B))
L(gpx g WOx W)
=DV 7 (D,
7 F D@ <7 (W for all T=F(Zx2) and hence 7
is a uniform contraction. Clearly, ev- (1x % ) = f and

such an 7 is unique.
Combining Proposition 2.11 and 2.12, we have

Theorem 2.13. The category APUConv is cartesion
closed.

Proposition 2.14. ASULIim is
formation of quotients in ASUConv.

closed under the

progf. For any ASULim-space (X, 7 and an onto map
f: X— Y, the quotient ASUConv-structure

7 F(¥Yx¥) —[0,0]
O =7 (@) = inf{7(D) | (Fx HV) B}

on Y satisfies (AULIm4).

Proposition 2.15. AULim is closed under the formation
af coproducts in ASULIm.

((X; 7)) je; of AULim-spaces
and a sink of canonical injections (¢;: X,— JIEI]X D sy, the

proof. For any family

coproduct ASULIim-structure
7 F(ILx;x 11 X)-10, ]
=7 Fo
defined by
W@ = inf{sup 7 (0,) | for each j=1,,m,0,& F(X;xX,)
for some i;= J such that ﬁl(z Py ,-,)(w,)<¢]
satistics (AULImMS). For this, let @, FeF( H]X X j]_[]X,-)
= =
be such that 3,@ - ¥ and take any (@,)5=,(¥F)7,
such that @, F(X, x X,), ¥ F(X,, % X;) for some
kel and  (1(e, % (0)<O, (Nex X ca)THCT,

=

respectively. Since @ - ¥ exists and
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0> (Y, xe)(0) » (Venx )@
_ O‘..n(z W X X0 ¢ (e % e FD,
1,--.m

S i
1=

there exists at least one pair of indices (i; &) such that

(e, X e @) » (4, X e (F) exists and for such a pair

(i; k), we have i,= k. Take all such pairs (¢; k) and

rearrange by p, for ¢=1,---,». We note that

if ;% Fk

0
(e, (@) - (“"'X“*')(w’)z{(a X0 D, - W) i i=
1, R i tl

then
0- T (\(enx e, )0, ¥)

and since  7,(@, - F<7,(@IV79,(¥,) for al

g=1,---,7, we have
¥ n m
gi)im,,a(a)g > ) <sup 2,( @)V sup7, (W)
and consequently #(@ - ¥) < 7( @)V 7(T).

Theorem 2.16. The categories ASUConv, ASULIm
and AULim are cartesian closed.

Proof. The fact that the categories ASUConv and
ASULim are cartesian closed is immediate from
Theorem 2.13 and Proposition 25 in [11] and for the
categary AULim, refer to [9].

3. The category ACHY

Recall from [7] that an approach filter (shortly, AFIL-)
space is a pair (X, 7), where X is a set and y: F(X)—
[0,00] is a map such that the following conditions are
satisfied :

(AFIL1) #( 2 =0 for all x= X,

(AFIL2) if F, G=F(X) and F<G, then »(F)=y(G)

and an approach filter space (X,7) is called an
approach Cauchy (shortly, ACHY- and in [8), ultra
approach Cauchy) space if the [ollowing condition is
satisfied :

(ACHY) if ¥, G=F(X) are such that 7 VG exists, then
rFNG < HFIV7E).

Definition 3.1. An approach filter space (X, 7 is called
an approach semi~Cauchy (shortly, ASCHY-) space if
the following condition is satisfied :

(SACHY) (%) = inf{sup’i=; »(F) | (F) "1 & S(F)},
where S(%#) is the collection of finite families (#;) %=, of
filters on X such that ()%= (FX F)<FXF.

Given AFIL-spaces (X, y) and (Y,¥), a map 1 X—Y
is called a contraction if ¥ (F(#)) < AF) for all FeF(X).

Let AFIL denote the category of AFIL-spaces and
contractions and denote the full subcategory of AFIL
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consisting of sall ASCHY(ACHY)-spaces by ASCHY
(ACHY), respectively.

Recall from (7, 8] that FIL (CHY) is embedded as a
bireflective and bicoreflective full subcategory in AFIL
(ACHY), respectively and an approach filter (Cauchy)
space (X, 7) is a filter (Cauchy) space, respectively iff y
(F(X)) ={0,cc}. Analogously, we have the [ollowing.

For any semi~Cauchy space (X, ¢), the map y. F
(X)—[0, 0°] defined by

0 for Fec

.’P-WC(IF)={OO i

is clearly an approach semi-Cauchy structure on X
Furthermore, for any semi-Cauchy spaces (X,¢) and
(Y,¢'), a map F(X.00—(Y,¢) is contimous iff
F(X,7v)—(Y,7s) is a contraction. So SCHY is
embedded as a full subcategory in ASCHY.

Proposition 3.2. An approach semi-Cauchy space (X, y)
is a semi-Cauchy space iff y(F(X)) <{0,0}.

Theorem 3.3. The category SCHY is a bireflective and
bicoreflective subcategory of ASCHY.

Theorem 3.4. The category AFIL is a topological
CONSUruct.

For any source (X_f’,(X]._ 7)) j=; in AFIL, the map
71 F(X) [0, o] defined by
FpF)= sup v/ (F D
-

is the initial approach flter structure on X and for any
sink ((X,-,y,—)—’-f’—sX),C] in AFIL, the map r%(X)—
[0, e] defined by

)= 0 i F= x for some x=X
’ {inf{y,(fr,) | FLE) 7 for some j=], F= #(X)) otherwise
is the final approach filter struciwre on X

Proposition 3.5. The category ASCHY is a bireflective
subcategory of AFIL.

Progf. For (X,y), the

(X,7) 25 (X, 7s), where

ASCHY
7s: F(X)—

any AFIL-space
—bireflector is
[0, e] is defined by
- " n
rs() = intfsupr(r) | (7)1 S()).
Proposition 3.6. The category ACHY is a bireflective
subcategory o the category ASCHY.

Proof. First, to show that the condition (ACHY) implies
(SACHY), take any F=F(X) and (F) =, = S(F). We may
assume that 7:\VVF =0 for i+, olherwise % and ¥ can
be replaced by #M% and in that case sup’e,®%) is not
changed by the condition (ACITY). So we can take
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(A)%=, such that A,e% for each j=1,+.,n and
ANA,=0o for i+j; Then there is A=% such that

AxAs CJI(A,-XAJ) and hence we have A= A4, for
X

some k={l,-,n}. Thus we obtain #<F and conse-
quently it follows thal ®7F) < {Fn) < sup’e; H{F.

For any approach semi-Cauchy space (X,7), the
ACHY-bireflector is (X, ) —% (X, 7o), where yoF

(X)—1[0, ] is defined by
FroyelF) = inf{sﬁyfr(fﬂ) | F)jer = O],
.

where C(F) is the collection of finite families (%)%, of
filters on X such that 3% VF+ for j=1,

\F<
=1

weon—1 and

Theorem 3.7. The categories ASCHY and ACHY are
topological constructs.

Progf. This is an immediate consequence of Theorem 3.4
and theorem [3].

Proposition 3.8. The category ACHY is closed under

the formationn of coproducts in AFIL.

Progf. For any family ((X;, 7;)),=7 of ACHY-spaces

and a sink of canonical injections (¢,: X;— [ X)), =,
J=

the ACHY -coproduct structure
riF (J1X,) =0, =]
arises from the AFIL-coproduct structure applying the
ACHY -bireflector. So
y:(F) =inf{ sﬁP 7:(@,)for each j=1,:,n %<
g
F(X;) for some i; €] such that(¢; (£))5 EC(H)

Taks any (¢, (%)), €c(9), then it must be & = -
=i,=1 for some pe] and IF VFHa for j=1,--,
n—1. Furthermore,

(o) = Dl =, (15) <7

J= 1=

and
stp 7:(F) =slp 7, (F) = 7,( ﬁlz)
J1 =l =
Consequently, 7y is in fact the AFIL-coproduct structure.

Remark 3.9. The category ACHY is not closed under
the formation of quotients AFIL. We use the same
example in Remark 3.4 [12] which proves that the
category CHY is not closed under the formation of
qguotients in FIL. Tet X={a, b, ¢, 4} be a set with
distinct four elements and



c={F< F(X) {a, }eFor {c, d)E 7}.

Then ¢ is a Cauchy structure on X and the map y,.:
HX)— [0, o] defined by

0 if{a, B}eF or{c, dieF
oo otherwis

Vel (,‘F)={

is an approach Cauchy structure on X.

Let R be the equivalence relation on X given by the
partition {{a}, {b, o}, {€}},w:X— X/R be the natural
map and cpbe the quotient filter structure on X/R with

respect to w. Then the induced AFIL-structure 7., on

X/R turns out lo be the quotient AFIL -structure (7.)

with respect to o and it fails to be an approach Cauchy
structure on X/R.

Proposition 3.10. The categorv ACHY is a Jinally
dense subcalegory of AFIL,

progf. It suffices to show that every AFIL-space is the
quotient object of some ACHY-space. Take any
AFIL-space (X, 7) and for each 7 = F(X), let

v F(X)—=[0, oo]
be a map defined by

0 ifG = x for some x=X
Gryg(G)={ 7(F) ifFG
oo otherwis.

Then 77 is an approach Cauchy structure on X and
(1x)F (X, y#¥)—=(X, v) is a contraction. Furthermore,

1 . .
(X, y5) 2207, (X, 7)) Ferxyconstitute a  final

epi-sink in AFIL and hence the unique map

II (1x)r: 11 (X, 75)— (X, )
FEF(X)

FEFX)

such that (Il ;epiny, (1x)#), ©, ¢ s = (1x)F is the
quotient map in AFIL, where ¢7:(X, ¥)— I sorx),

(X, 77) is the canonical injection map for each ¥ €
(X). Moreover, since 1] repx) (X, 79) s an

approach Cauchy space by Proposition 3.8, we have the
result.

4 The relation of the categories AULim
and ACHY

For any AFIL-space (X, 7), define a map»,:# XX X
—[0,«] by

D=, (D) =inf{y(F) | Fx F< @}
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Proclaim 4.1. For any AFIL-space (X, 7), the map
7, is an ASUConv-structure on X.

Proclaim 4.2. For any AFIL-spaces (X, y) and
(Y, ¥), famap 7 (X, »—=(Y,7) is a contraction,
then f:(X, 9,)— (Y, »,) is a uniform contraction.

Proclaim 4.3. For any ASCHY(ACHY)-space (X, y),
the map (7,) is an ASULIm(AULIm)-structure on X,
respectively.

proof. For any ASCHY-space (X, y), the map (9,10 F
(X x X)—[0, o] is actually defined by

(7)) = inf{?ﬁp?’(f), | ()51
CF(X) such that ,é]( Fix 7)< O}

and for the remainder, refer to Proposition 6.1 [O].

Proclaim 4.4. For any ASCHY-spaces (X, y) and
(Y, 7), f amap £ (X, v)—=(Y, ) is a contraction,
then (X, (2,))—~(Y.,(9,)) is a uniform

contraction.
Proof Take any @ef(XxX) and (#)% < F(X)
such that Q(T;X Fd<®, then (AF )i €F(Y) are
such that  (V(/(FIXAFN (£ B  and sup’_,
Y(RF ;) <sup’i= »(F;) and hence we are done.

For any ASUConv-space (X, 7), let 7,:7(X)— [0, o]
be the map defined by

F =y, (F) = g(FxF).

Proclaim 4.5. For any ASUConv(ASULim, AULim)
—space (X, ), the pair (X, y,) is an AFIL(ASCHY,

ACHY)}-space.

Proof Refer to Proposition 6.3 [9].

Proclaim 4.6. For any ASUConv-spaces (X, 2) and
(Y. 7),if £i(X, 9= (Y, 7) is a uniform contraction,

then f:(X, v,)— (Y, y;) is a contraction.

Proclaim 4.7. (1) For any AFIL-structure y on a set
X, r=7,.2) For any ASCHY-structure y on a set X,

Y=Y

Proof (1) For any FEF(X),
Yo F) = 9,(FXF) = inf(7(G) |G xG <Fx F
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and since 6 X G (F X ¥ implies G <%, it is proved..
(2) For any FE€7F (X),

Y (0, (F) = (5, )L (FxF)
= inf{sup 7(F,) | (F,)]-. S
Q(?,—x FICFXF)

=y(F)
by the condition (ASCHY).

(X )suchthat

Proclaim 4.8. (1) For any ASUConv-structure eta on
X, 757,

(2) For any ASULim-structure 7 on X, n=(7p,),.
Progf (1) For any 0=F(X x X),

1y, = inf{r,(F) | Fx <o}

7

=inf{p( FxF) | T = F{ D}
=9 D).
(2) For any 0=F(X x X)),

" .
(7,,)c =nf{sup »,( 7£) | (#,)7=| SF(X) suchthat Dl( Fix F <@}
=1

= inf{sup 70 F,% %) | ( F,)"_ . S7(X) suchthar ]ﬁl(?,-x 7,)¢0)
=1 -

29(0).

Theorem 49. AFI. (ASCHY, ACHY) is a
bicoreflective subcategory o ASUConv (ASULim,
AULIm), respectively.
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