Mated Fuzzy Topological Spaces

Eun Pyo Lee and Young-Bin Im

Department of Mathematics, Seonam University

ABSTRACT

We introduce the concept of mated fuzzy topological spaces and then investigate some of their properties.

Key Words: mated fuzzy topology, fuzzy (r, s)-open set, fuzzy (r, s)-interior

1. Introduction

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Çoker and his colleagues [5, 6, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets.

In this paper, we introduce the concept of mated fuzzy topological spaces as a generalization of intuitionistic fuzzy topological spaces and smooth topological spaces, and then investigate some of their properties. Also we introduce the notions of fuzzy (r, s)-interiors and fuzzy (r, s)-closures in mated fuzzy topological spaces.

2. Preliminaries

In this paper, I denotes the unit interval [0,1] of the real line. For a set X, I^X denotes the collection of all maps from X to I. A member μ of I^X is called a fuzzy set of X. By $\hat{0}$ and \hat{I} we denote constant maps on X with value 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\hat{I} - \mu$. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered pair $A = (\mu_A, \gamma_A)$ where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of nonmembership respectively, and $\mu_A + \gamma_A \le \hat{1}$.

Obviously every fuzzy set μ of X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1} - \mu)$.

Definition 2.1 [1] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$.
- (2) A = B iff $A \subseteq B$ and $A \supseteq B$.
- (3) $A^{c} = (\gamma_{A}, \mu_{A}).$

접수일자 : 2000년 11월 18일 완료일자 : 2000년 11월 18일

- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- (6) $0_{\sim} = (\hat{0}, \hat{1})$ and $1_{\sim} = (\hat{1}, \hat{0})$.

Definition 2.2 [6] An intuitionistic fuzzy topology on X is a family \Im of intuitionistic fuzzy sets in X which satisfies the following properties:

- (1) $0_{\sim}, 1_{\sim} \in \Im$.
- (2) If $A_1, A_2 \in \mathcal{I}$ then $A_1 \cap A_2 \in \mathcal{I}$.
- (3) If $A_i \in \mathcal{I}$ for all i, then $\bigcup A_i \in \mathcal{I}$.

The pair (X, \Im) is called an *intuitionistic fuzzy* topological space.

Let (X, \mathcal{T}) be an intuitionistic fuzzy topological space. Then members of \mathcal{T} are called *intuitionistic fuzzy open* sets of X and their complements *intuitionistic fuzzy closed sets*.

Definition 2.3 [6] Let (X, \mathcal{I}) be an intuitionistic fuzzy topological space and A an intuitionistic fuzzy set of X. Then the *fuzzy closure* is defined by

$$Cl(A) = \bigcap \{F \mid A \subseteq F, F^c \in \mathcal{I}\}$$

and the fuzzy interior is defined by

$$Int(A) = \bigcup \{G \mid A \supseteq G, G \in \mathcal{I}\}\$$

Proposition 2.4 [6] For an intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \Im) , we have

- (1) $\operatorname{Int}(A)^c = \operatorname{Cl}(A^c)$.
- (2) $\operatorname{Cl}(A)^c = \operatorname{Int}(A^c)$.

3. Mated fuzzy topological spaces

Let I(X) be a family of all intuitionistic fuzzy sets of X.

Definition 3.1 [7] Let X be a nonempty set. A *mated* fuzzy topology $\Im = (\tau, \tau_c)$ on X is two maps $\tau: I(X) \to I$ and $\tau_c: I(X) \to I$ which satisfy the following properties:

- (1) $\tau(A) + \tau_c(A) \le 1$ for any $A \in I(X)$.
- (2) $\tau(0_{\sim}) = \tau(1_{\sim}) = 1$ and

$$\tau_c(0_{\sim}) = \tau_c(1_{\sim}) = 0.$$

- (3) $t(A \cap B) \ge t(A) \land t(B)$ and $\tau_c(A \cap B) \le \tau_c(A) \lor \tau_c(B)$.
- (4) $\tau(\bigcup A_i) \ge \bigwedge \tau(A_i)$ and $\tau_c(\bigcup A_i) \le \bigvee \tau_c(A_i)$.

The $(X, \mathcal{T}) = (X, \tau, \tau_c)$ is called a mated fuzzy topological space. And, we call τ a gradation of openness and τ_c a gradation of nonopenness.

Definition 3.2 [7] Let X be a nonempty set. A *mated* fuzzy family of closed sets $\mathcal{Q}=(\omega,\omega_c)$ on X is two maps $\omega:I(X)\to I$ and $\omega_c:I(X)\to I$ which satisfy the following properties:

- (1) $\omega(A) + \omega_c(A) \le 1$ for any $A \in I(X)$.
- (2) $\omega(0_{\sim}) = \omega(1_{\sim}) = 1$ and $\omega_c(0_{\sim}) = \omega_c(1_{\sim}) = 0$.
- (3) $\omega(A \cup B) \ge \omega(A) \land \omega(B)$ and $\omega_c(A \cup B) \le \omega_c(A) \lor \omega_c(B)$.
- (4) $\omega(\bigcap A_i) \ge \bigwedge \omega(A_i)$ and $\omega_c(\bigcap A_i) \le \bigvee \omega_c(A_i)$.

In this case, we call ω a gradation of closedness and ω_c a gradation of nonclosedness.

Proposition 3.3 Let $\Im = (\tau, \tau_c)$ be a mated fuzzy topology on X and $\Omega_{\Im} = (\omega_{\tau}, \omega_{\tau_c})$ defined by

$$\omega_t(A) = \tau(A^c)$$
 and $\omega_{\tau_c}(A) = \tau_c(A^c)$.

Then Ω_T is a mated fuzzy family of closed sets on X.

Proof. (1) For any $A \in I(X)$,

$$\omega_{\tau}(A) + \omega_{\tau_{c}}(A) = \tau(A^{c}) + \tau_{c}(A^{c}) \leq 1.$$

- (2) $\omega_{\tau}(0_{\sim}) = \tau(1_{\sim}) = 1$, $\omega_{\tau}(1_{\sim}) = \tau(0_{\sim}) = 1$ and $\omega_{\tau_{c}}(0_{\sim}) = \tau_{c}(1_{\sim}) = 0$, $\omega_{\tau_{c}}(1_{\sim}) = \tau_{c}(0_{\sim}) = 0$.
- (3) $\omega_{\tau}(A \cup B) = \tau(A^{c} \cap B^{c}) \ge \tau(A^{c}) \wedge \tau(B^{c})$ = $\omega_{\tau}(A) \wedge \omega_{\tau}(B)$

and

$$\omega_{\tau_c}(A \cup B) = \tau_c(A^c \cap B^c) \le \tau_c(A^c) \lor \tau_c(B^c)$$
$$= \omega_{\tau_c}(A) \lor \omega_{\tau_c}(B).$$

(4) $\omega_r(\bigcap A_i) = r(\bigcup A_i^c) \ge \bigwedge \tau(A_i^c) = \bigwedge \omega_r(A_i)$ and

$$\omega_{\varepsilon}(\bigcap A_i) = \tau_{\varepsilon}(\bigcup A_i^{\varepsilon}) \le \bigvee \tau_{\varepsilon}(A_i^{\varepsilon}) = \bigvee \omega_{\varepsilon}(A_i).$$

Proposition 3.4 Let $\mathcal{Q} = (\omega, \omega_c)$ be a mated fuzzy family of closed sets on X and $\mathcal{T}_{\mathcal{Q}} = (\tau_\omega, \tau_{\omega_c})$ defined by $\tau_\omega(A) = \omega(A^c)$ and $\tau_\omega(A) = \omega_c(A^c)$.

Then $\Im_{\mathcal{Q}}$ is a mated fuzzy topology on X.

Proof. Similar to the above proposition.

Corollary 3.5 Let $\Im = (\tau, \tau_c)$ be a mated fuzzy topology and $\varOmega = (\omega, \omega_c)$ a mated fuzzy family of closed sets.

Then $\Im_{\Omega_0} = \Im$ and $\Omega_{\Im_0} = \Omega$.

Proposition 3.6 Let (X, τ, τ_c) be a mated fuzzy topological space. Then for each $r \in I$,

$$\tau_r = \{ A \in I(X) \mid \tau(A) \ge r \}$$

is an intuitionistic fuzzy topology on X. Moreover $\tau_{r_1} \supseteq \tau_{r_2}$ if $r_1 \le r_3$.

Proof. (1) Since $\tau(0_{\sim}) = \tau(1_{\sim}) = 1 \ge r$, we have $0_{\sim}, 1_{\sim} \in \tau_r$.

- (2) Let A, $B \in \tau_r$. Then $\tau(A) \ge r$ and $\tau(B) \ge r$. So $\tau(A \cap B) \ge \tau(A) \wedge \tau(B) \ge r$ and hence $A \cap B \in \tau_r$.
- (3) Let $A_i \in \tau_r$ for all $i \in \Gamma$. Then $\tau(A_i) \ge r$ for all $i \in \Gamma$. So $\tau(\bigcup A_i) \ge \bigwedge \tau(A_i) \ge r$. Thus $\bigcup A_i \in \tau_r$.

Therefore, τ_r is an intuitionistic fuzzy topology on X. Next, let $r_1 \leq r_2$. Take $A \in \tau_{r_2}$. Then $\tau(A) \geq r_2 \geq r_1$ and hence $A \in \tau_{r_1}$. Thus $\tau_{r_1} \supseteq \tau_{r_2}$.

Proposition 3.7 Let (X, τ, τ_c) be a mated fuzzy topological space. Then for each $s \in I$,

$$\tau_c^s = \{ A \in I(X) \mid \tau_c(A) \leq s \}$$

is an intuitionistic fuzzy topology on X. Moreover $\tau_c^{s_1} \subseteq \tau_c^{s_2}$ if $s_1 \le s_2$.

Proof. (1) Since $\tau_c(0_{\sim}) = \tau_c(1_{\sim}) = 0 \le s$, we have $0_{\sim}, 1_{\sim} \in \tau_c^{s}$.

- (2) Let A, $B \in \tau_c^s$. Then $\tau_c(A) \le s$ and $\tau_c(B) \le s$. So $\tau_c(A \cap B) \le \tau_c(A) \vee \tau_c(B) \le s$ and hence $A \cap B \in \tau_c^s$.
- (3) Let $A_i = \tau_c^s$ for all $i \in \Gamma$. Then $\tau_c(A_i) \le s$ for all $i \in \Gamma$. So $\tau_c(\bigcup A_i) \le \bigvee \tau_c(A_i) \le s$. Thus $\bigcup A_i \in \tau_c^s$.

Therefore, τ_c^s is an intuitionistic fuzzy topology on X. Next, let $s_1 \leq s_2$. Take $A \in \tau_c^{s_1}$. Then $\tau_c(A) \leq s_1 \leq s_2$ and hence $A \in \tau_c^{s_1}$. Thus $\tau_c^{s_1} \subseteq \tau_c^{s_2}$.

From the above two propositions we have the following result.

Corollary 3.8 Let $\Im = (\tau, \tau_c)$ be a mated fuzzy topology on X. Then for each $r, s \in I$,

 $\Im_r^s = \{ A \in I(X) \mid \tau(A) \ge r \text{ and } \tau_c(A) \le s \}$

is an intuitionistic fuzzy topology on X and $\Im_r^s = \tau_r \cap \tau_c^s$. Moreover $\Im_{r_2}^{s_1} \subseteq \Im_{r_1}^{s_2}$ if $r_1 \le r_2$ and $s_1 \le s_2$.

4. Fuzzy (r,s)-interiors and fuzzy (r,s)-closures

Let $I \oplus I = \{(r, s) \mid r, s \in I \text{ and } r + s \le 1\}.$

Definition 4.1 Let A be an intuitionistic fuzzy set of a

mated fuzzy topological space (X, τ, τ_o) and $(r, s) \in I \oplus I$. Then A is called:

- (1) a fuzzy (r, s)-open set if $\tau(A) \ge r$ and $\tau_c(A) \le s$,
- (2) a fuzzy (r, s)-closed set if $\tau(A^c) \ge r$ and $\tau_c(A^c) \le s$.

Definition 4.2 Let (X, τ, r_c) be a mated fuzzy topological space. For each $(r, s) \in I \oplus I$ and for each $A \in I(X)$, the fuzzy (r, s)-interior is defined by

Int
$$(A, r, s) = \bigcup \{B \in I(X) \mid A \supseteq B \text{ and } B \text{ is a fuzzy } (r, s) \text{-open set}\}$$

and the fuzzy (r,s)-closure is defined by $Cl(A, r, s) = \bigcap \{B \in I(X) \mid A \subseteq B \text{ and } B \text{ is a fuzzy } (r,s)\text{-closed set } \}.$

The operators $\operatorname{Int}: I(X) \times I \oplus I \to I(X)$ and $\operatorname{Cl}: I(X) \times I \oplus I \to I(X)$ are called the fuzzy interior operator and the fuzzy closure operator in (X, τ, τ_c) , respectively.

Obviously, $\operatorname{Int}(A,r,s)$ is the greatest fuzzy (r,s) -open set which is contained in A and $\operatorname{Cl}(A,r,s)$ is the smallest fuzzy (r,s)-closed set which contains A. Also, $\operatorname{Int}(A,r,s)=A$ for any fuzzy (r,s)-fuzzy open set A and $\operatorname{Cl}(A,r,s)=A$ for any fuzzy (r,s)-closed set A. Moreover, we have the following results.

Proposition 4.3 Let (X, τ, τ_c) be a mated fuzzy topological space and let $\operatorname{Int}: I(X) \times I \oplus I \to I(X)$ the fuzzy interior operator in (X, τ, τ_c) . Then for any $A, B \in I(X)$ and $(\tau, s) \in I \oplus I$.

- (1) $Int(0_{\sim}, r, s) = 0_{\sim}, Int(1_{\sim}, r, s) = 1_{\sim}.$
- (2) $\operatorname{Int}(A, r, s) \subseteq A$.
- (3) $\operatorname{Int}(A, r_1, s_1) \supseteq \operatorname{Int}(A, r_2, s_2)$ if $r_1 \le r_2$ and $s_1 \ge s_2$.
- (4) $\operatorname{Int}(A \cap B, r, s) = \operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s)$.
- (5) Int(Int(A, r, s), r, s) = Int(A, r, s).

Proof. (1), (2) and (5) are obvious.

(3) Let $r_1 \le r_2$ and $s_1 \ge s_2$. Then every fuzzy (r_2, s_2) -open set is also fuzzy (r_1, s_1) -open. Hence we have

$$Int(A, r_1, s_1)$$

$$= \bigcup \{B \in I(X) \mid A \supseteq B, \ \tau(B) \ge r_1, \ \tau_c(B) \le s_1\}$$

$$\supseteq \bigcup \{B \in I(X) \mid A \supseteq B, \ \tau(B) \ge r_2, \ \tau_c(B) \le s_2\}$$

$$= Int(A, r_2, s_2).$$

(4) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, we have $\operatorname{Int}(A \cap B, r, s) \subseteq \operatorname{Int}(A, r, s)$ and $\operatorname{Int}(A \cap B, r, s) \subseteq \operatorname{Int}(B, r, s)$. Thus $\operatorname{Int}(A \cap B, r, s) \subseteq \operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s)$.

Conversely, it is clear that $A \cap B \supseteq \operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s)$.

Also,
$$\tau(\operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s))$$

 $\geq \tau(\operatorname{Int}(A, r, s)) \wedge \tau(\operatorname{Int}(B, r, s))$
 $\geq r \wedge r = r$
and
 $\tau_c(\operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s))$
 $\leq \tau_c(\operatorname{Int}(A, r, s)) \vee \tau_c(\operatorname{Int}(B, r, s))$
 $\leq s \vee s = s$.

By the definition of fuzzy (r, s)-interior, $\operatorname{Int}(A \cap B, r, s) \supseteq \operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s)$. Hence $\operatorname{Int}(A \cap B, r, s) = \operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s)$.

Proposition 4.4 Let $\operatorname{Int}: I(X) \times I \oplus I \to I(X)$ be a map satisfying (1) – (5) of Proposition 4.3. Let $\tau: I(X) \to I$ and $\tau_c: I(X) \to I$ be maps defined by $\tau(A) = \bigvee \{ r \in I \mid \operatorname{Int}(A, r, s) = A \}$ and $\tau_c(A) = \bigwedge \{ s \in I \mid \operatorname{Int}(A, r, s) = A \}$. Then $\Im = (\tau, \tau_c)$ is a mated fuzzy topology on X.

Proof. (i) Since $(r,s) \in I \oplus I$, we have $r+s \le 1$. Hence $s \le 1-r$. Thus

$$1-\tau(A) = 1 - \bigvee \{r \in I \mid \operatorname{Int}(A, r, s) = A\}$$

$$= \bigwedge \{1 - r \in I \mid \operatorname{Int}(A, r, s) = A\}$$

$$\geq \bigwedge \{s \in I \mid \operatorname{Int}(A, r, s) = A\}$$

$$= \tau_c(A).$$
So $\tau(A) + \tau_c(A) \leq 1$ for each $A \in I(X)$.

- (ii) Since $Int(0_{\sim}, 1, 0) = 0_{\sim}$ and $Int(1_{\sim}, 1, 0) = 1_{\sim}$, we have $\tau(0_{\sim}) = \tau(1_{\sim}) = 1$, $\tau_c(0_{\sim}) = \tau_c(1_{\sim}) = 0$.
- (iii) Suppose that $\tau(A_1 \cap A_2) < \tau(A_1) \wedge \tau(A_2)$. Then there is a $t \in I$ such that

$$\tau(A_1 \cap A_2) < t < \tau(A_1) \wedge \tau(A_2).$$

Since $t < \tau(A_i) = \bigvee \{r \in I \mid \operatorname{Int}(A_i, r, s) = A_i\}$ for each i = 1, 2, there are $(r_1, s_1), (r_2, s_2) \in I \oplus I$ such that $t < r_i \le \tau(A_i)$ and $\operatorname{Int}(A_i, r_i, s_i) = A_i$ for each i = 1, 2. Let $r = r_1 \land r_2$ and $s = s_1 \lor s_2$. Since $(r_1, s_1), (r_2, s_2) \in I \oplus I$,

$$1-r = 1 - (r_1 \land r_2)
= (1-r_1) \lor (1-r_2) \ge s_1 \lor s_2 = s.$$

Hence $(r, s) \in I \oplus I$.

Since $r \le r_i$ and $s \ge s_i$ for each i=1,2, we have $\operatorname{Int}(A_i, r, s) \supseteq \operatorname{Int}(A_i, r_i, s_i) = A_i$. Hence $\operatorname{Int}(A_i, r, s) = A_i$ for each i=1,2. By (4),

 $Int(A_1 \cap A_2, r, s) = Int(A_1, r, s) \cap Int(A_2, r, s)$ = $A_1 \cap A_2$.

Thus $t > \tau(A_1 \cap A_2)$

 $= \bigvee \{r^* \in I \mid \text{Int}(A_1 \cap A_2, r^*, s^*) = A_1 \cap A_2\}$

 $\geq r = r_1 \wedge r_2 \rangle t$. It is a contradiction. Hence $\tau(A_1 \cap A_2) \geq \tau(A_1) \wedge \tau(A_2)$. Next, suppose that $\tau_c(A_1 \cap A_2) \rangle \tau_c(A_1) \vee \tau_c(A_2)$. Then there is a $t \in I$ such that $\tau_c(A_1 \cap A_2) \rangle t \rangle \tau_c(A_1) \vee \tau_c(A_2)$. Since $t \rangle \tau_c(A_i) = \bigwedge \{s \in I \mid \text{Int}(A_i, r, s) = A_i\}$ for each i = 1, 2, there are

 $(r_1, s_1), (r_2, s_2) \in I \oplus I$ such that $t > s_i \ge \tau_c(A_i)$ and $\operatorname{Int}(A_i, r_i, s_i) = A_i$ for each i = 1, 2. Let $r = r_1 \land r_2$ and $s = s_1 \lor s_2$. Then $(r, s) \in I \oplus I$ and $\operatorname{Int}(A_i, r, s) = A_i$ for each i = 1, 2. By (4),

 $\operatorname{Int}(A_1 \cap A_2, r, s) = \operatorname{Int}(A_1, r, s) \cap \operatorname{Int}(A_2, r, s) = A_1 \cap A_2.$ Thus $t < \tau_c(A_1 \cap A_2)$

 $= \bigwedge \{s^* \in I \mid \operatorname{Int}(A_1 \cap A_2, r^*, s^*) = A_1 \cap A_2\}$

 $\leq s = s_1 \wedge s_2 \langle t$. It is a contradiction. Hence $\tau_c(A_1 \cap A_2) \leq \tau_c(A_1) \vee \tau_c(A_2)$.

(iv) First, suppose that $\tau(\bigcup A_i) < \bigwedge \tau(A_i)$. Then there is a $t \in I$ such that $\tau(\bigcup A_i) < t < \bigwedge \tau(A_i)$. Since $t < \tau(A_i) = \bigvee \{r \in I \mid \operatorname{Int}(A_i, r, s) = A_i\}$ for each i, there are $(r_i, s_i) \in I \oplus I$ such that $t < r_i \le \tau(A_i)$ and $\operatorname{Int}(A_i, r_i, s_i) = A_i$ for each i. Let $r = \bigwedge r_i$ and $s = \bigvee s_i$. Since $(r_i, s_i) \in I \oplus I$ for each i,

$$1-r=1-(\bigwedge r_i)=\bigvee (1-r_i)\geq \bigvee s_i=s.$$

Hence $(r, s) \in I \oplus I$. And since $r \le r_i$ and $s \ge s_i$ for each i, Int $(A_i, r, s) \supseteq \text{Int}(A_i, r_i, s_i) = A_i$.

Hence $\operatorname{Int}(\bigcup A_i, r, s) \supseteq \operatorname{Int}(A_i, r, s) \supseteq A_i$ for each i. So $\operatorname{Int}(\bigcup A_i, r, s) \supseteq \bigcup A_i$ and hence

 $\operatorname{Int}(\bigcup A_i, r, s) = \bigcup A_i.$

Thus $t > \tau(\bigcup A_i)$

$$= \bigvee \{r^* \in I \mid \operatorname{Int}(\bigcup A_i, r^*, s^*) = \bigcup A_i\}$$

$$\geq r = \bigwedge r_i \geq t.$$

It is a contradiction. Hence $\tau(\bigcup A_i) \ge \bigwedge \tau(A_i)$. Next, suppose that $\tau_c(\bigcup A_i) > \bigvee \tau_c(A_i)$. Then there is a $t \in I$ such that $\tau_c(\bigcup A_i) > t > \bigvee \tau_c(A_i)$.

Since $t > \tau_c(A_i) = \bigwedge \{s \in I \mid \operatorname{Int}(A_i, r, s) = A_i\}$ for each i, there are $(r_i, s_i) \in I \oplus I$ such that $t > s_i \ge \tau_c(A_i)$ and $\operatorname{Int}(A_i, r_i, s_i) = A_i$ for each i. Let $r = \bigwedge r_i$ and $s = \bigvee s_i$. Then $(r, s) \in I \oplus I$ and $\operatorname{Int}(\bigcup A_i, r, s) = \bigcup A_i$. Thus $t < \tau_c(\bigcup A_i)$

$$= \bigwedge \{s^* \in I \mid \operatorname{Int}(\bigcup A_i, r^*, s^*) = \bigcup A_i\}$$

$$\leq s = \bigvee s, \leq t.$$

It is a contradiction. Hence $\tau_c(\bigcup A_i) \leq \bigvee \tau_c(A_i)$. Therefore $\Im = (\tau, \tau_c)$ is a mated fuzzy topology on X.

Proposition 4.5 Let (X, τ, τ_c) be a mated fuzzy topological space and let $C1: I(X) \times I \oplus I \to I(X)$ the fuzzy closure operator in (X, τ, τ_c) . Then for any A.B = I(X) and $(\tau, s) = I \oplus I$,

- (1) $Cl(0_{\sim}, r, s) = 0_{\sim}, Cl(1_{\sim}, r, s) = 1_{\sim}.$
- (2) $C1(A, r, s) \supseteq A$.
- (3) $Cl(A, r_1, s_1) \subseteq Cl(A, r_2, s_2)$ if $r_1 \le r_2$ and $s_1 \ge s_2$.
- (4) $Cl(A \cup B, r, s)$ = $Cl(A, r, s) \cup Cl(B, r, s)$.
- (5) Cl(Cl(A, r, s), r, s) = Cl(A, r, s).

Proof. Similar to Proposition 4.3.

Proposition 4.6 Let $C1:I(X)\times I \oplus I \to I(X)$ be a map satisfying (1) – (5) of Proposition 4.5. Let $\omega:I(X)\to I$ and $\omega_{\varepsilon}:I(X)\to I$ be maps defined by

$$\omega(A) = \bigvee \{ r \in I \mid \text{Cl}(A, r, s) = A \}$$

and $\omega_c(A) = \bigwedge \{ s \in I \mid \text{Cl}(A, r, s) = A \}.$

Then $\Omega = (\omega, \omega_c)$ is a mated fuzzy family of closed sets on X.

Proof. Similar to Proposition 4.4

For a family $\{A_i\}_{i\in I'}$ of intuitionistic fuzzy sets of a mated fuzzy topological space X and $(r,s)\in I\oplus I$, $\bigcup \operatorname{Cl}(A_i,r,s)\subseteq\operatorname{Cl}(\bigcup A_i,r,s)$ and the equality holds when I' is a finite set. Similarly,

 $\bigcap \operatorname{Int}(A_i, r, s) \supseteq \operatorname{Int}(\bigcap A_i, r, s) \text{ and }$ $\bigcap \operatorname{Int}(A_i, r, s) = \operatorname{Int}(\bigcap A_i, r, s) \text{ for a finite set } \Gamma.$

Proposition 4.7 For an intuitionistic fuzzy set A of a mated fuzzy topological space (X, τ, τ_c) and $(r, s) \in I \oplus I$, we have

- (1) $Int(A, r, s)^c = Cl(A^c, r, s).$
- (2) $Cl(A, r, s)^c = Int(A^c, r, s)$.

Proof. (1) Int $(A, r, s)^c$ $= (\bigcup \{B \in I(X) \mid A \supseteq B, \tau(B) \ge r, \tau_c(B) \le s\})^c$ $= \bigcap \{B^c \in I(X) \mid A^c \subseteq B^c, \omega_\tau(B^c) \ge r, \omega_{\tau_c}(B^c) \le s\}$ $= \operatorname{Cl}(A^c, r, s).$

Similarly, we can show (2).

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-90.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [4] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology : Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993),
- [5] D. Çoker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4 (1996), 749-764.
- [6] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [7] D. Çoker and A. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostak's sence, BUSEFAL 67 (1996) 67-76.
- [8] D. Çoker and A. Haydar Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math 3 (1995), 899-909.

[9] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.

저 자 소 개

이 은 표 (Eun Pyo Lee)

정회원

현재 : 서남대학교 수학과 관심분야 : Fuzzy Topology Phone : 063-620-0139

E-mail : eplee@tiger.seonam.ac.kr

임 영 빈 (Young-Bin Im)

정회원

제9권 5호 참조

현제 : 서남대학교 수학과