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ABSTRACT

In this paper we define fuzzy subsystems of a fuzzy finite state machine by using maps S* of each state subset to
its all @-successors, which i1s a natural generalization of crisp submachines as fuzzy. And the corresponding concepts

are also examined.
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1. Introduction

Automata theory is one of basic and important
theorics in computer science. Since theory of fuzzy sets
was introduced by Zadeh [6, 71, Wee [5] introduced the
idea of fuzzy automala. There has been considerable
growth in the area of fuzzy automata [1]. Malik,
Mordeson and Sen [2, 3, 4] used algebraic techniques o
the study of fuzzy automata, and also in [3] they
inlroduced the notions of subsystems of a fuzzy finite
state machine in order to consider state membership as
fuzzy.

In this paper we introduce the notions of fuzzy
subsystems of a fuzzy finite state machine by using
maps SY of a state subset to its all e—successors, which
are equivalent 1o the form of subsystems and strong
subsystems defined by Malik, Mordeson and Sen[3].
These are a nalural generalizations of crisp submachines
as fuzzy. The notions of fuzzy homomorphism and
strong fuzzy homomorphisin also are introduced. And it
is proved that the fuzzy homomorphic inverse image of a
fuzzy subsyslem is a fuzzy subsystem. Moreover,
strong fuzzy homomorphic image of a fuzzy subsystem
is shown to be a [uzzy subsystem.

Before we go further, we infroduce the following
definitions and notations. Let A be a fuzzy subset of @,
with the membership (4: @—[0,1]1. The closure of

{x=Q|ua(x) >0} is called the support of A, denoted by

suppA. If B is also a fuzzy subset of @, then the fuzzy
sets AUB, ANB are defined as

#aus(x) = pa(0) Vug(x), VzeQ,
tansx) = w4l Aus(x), Vas Q.

When we want to exhibit an element x=@ that
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TFuzzy finite state machine, fuzzy subsystem, and strong homomorphism.

typically belongs to a fuzzy set A, we may demand its
membership value to be greater than some threshold
a=(0,1). The ordinary set of such elements is the «
—cut A, of A, A,={x=Qlus(x)=a}. It is easily
checked that the following properties hold :
(AUB),=A,UB, (ANB,= A,NBEB,.

A is said to be included in B, denoted by ACBH, if
for each x, pa(x) < pp(x). A fuzzy finite state machine
is a triple M=(Q, X, ), where @ and X are finite
nonempty sets and g is a membership of some fuzzy
subsels of QX XxQ, ie, m@xXxg@Q—I[0, 1]. lLet
X" denote the set of all words of elements of X of
finite length. @ is called the set of states and X is
called the set of input symbols. Let A denote the cmpty
word in X™ and |x| denote the length of x, Vx=X".

Define z" @ @xX"xQ—1[0, 11 by

% [ 1if g=p
and
©a, xa, = Mg, x. DNAulr, a Dlre),
Vi, q=Q, Vxe X', Yas X,

Then
e a, xy, 0= Vu'(q, x, DAL (7, 3. D)]re @),
Vo, q=@, Vx, yv=X.

This means that a fuzzy subset g of @X Xx @ can
be naturally extended to a fuzzy subset «° of

@x X* » @ under max-min operation.

Definition 1.1. Let M=(Q, X, ) be a fuzzy [nite
state machine. Let p, ¢g= @, p is called an immediate «
if there exists @eX such that
wlg, a, p=a 0<{e=1. And pis an e-successor of »
if there exists xeX* such that £'(¢, x ) =a,

-successor of g



0<axl,

Remark 1.2. If M=(Q, X, 1) is a fuzzy finite state
machine, # is a fuzzy subset of Qx Xx . From the
definition 1.1, we note that “p is an immediate o
-successor of ¢” means that there exists 2= X such
that (¢, @, P E@x X% Q is an element of a-cut of
#, 0<esl.

In fuzzy set theory, we usually consider the support of
¢ as (O-cut. From the meaning, we naturally define
O-successor as follows : 2 is said to be an immediate
O-successor of ¢ if there exists g=X such that
(g, a, p)>0.In the same ways, we have the definition
of O-successors. (-successors are simply called
successors [3,4].

Lemma 1.3. Let M= (Q, X, ) be a fuzzy finite state
machine, and let ¢, », r= Q.
Then

(1) ¢ is an e-successor of g,
(2) I p is an e-successor of ¢ and » is an «
~successor of p, then » is an g-successor of ¢.

Proof. Let a>0. Since u#*(g, 4, @9 =1=a, (1) holds.
Let p be an a-successor of ¢, and let » be an @
-successor of p. Then there exist x, ye X such that
£(q, x, p)za and p'(p, v, 7) 2a. So

2 g, xy, nzu(q, x, DAL v, ¥ =e

Hence » is an asuccessor of g¢.
For a=0, see [4, Proposition 5).

Let M=(Q, X, 1) be a fuzzy finite state machine,
and lel ¢=¢@. We denote by S%g) the set of all a
—successors of ¢. And if TCQ, then the set of all «
-successors of T in @, denoted by Sg(T), is defined to
be the set SH(T) = (JNS“(@)l¢e T}. This is in fact a
mapping of the set of all subsets of @ into itself. If 1o
confusion arises, then we write S*(7) for S%(T).

Lemma 14. Lel M=(Q, X, ») be a fuzzy finite state
machine, and let A, BCQ Then the following
assertions hold for each a<[0, 1].

(1) If ACB, then S%(A4)CS“(B).
(2) ACSUA).

(3) S*(S"(A)) = 5%(A).

4) SCAUB) = §(A)US%B).
(B) SHANBCS*(A) NS“B).

(6) If a=4, then S5%A)cS%A).

FProgf. We only prove (3). The others can be proved by
the similer arguments. By (2), S%(A4)CSYS%(4)). Let
g= SY(5°(A)), then g=S8%p) for some pe S(A).

And also p=S%») for some r<=A. Thus ¢ is an «
—successor of p and p is an e-successor of 7, which
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implies by Lemma 1.3(2) that g= $*(»)CS°(A). Hence
SUS7(A) = §*(A).
The above theorem is in fact the generalized formula

of Theorem 8 [4], which is exactly in the particular case
of a=0.

2. Fuzzy Subsystems

Mappings 5° on the set of all sebsets of @ act an
important role to analyze the structure of a fuzzy finite
state machine.

By using these mappings S5° we now define fuzzy
subsystems of a fuzzy finite state machine as follows.

Definition 2.1. Let M= (Q, X, ) be a fuzzy finite
state machine, Let & be a fuzzy subset of . Then
N=(Q, & X, p) is said to be an e-subsystem of M
if 8%8,)Cd,, for a-cut 8, of 8 And if Nis sn «
—subsystem of M for each e, then N is simply called a
fuzzy subsystem of M.

From the following theorem, we can find that the
definition of fuzzy subsystem is equivalent to that of a
subsystem given by D. S. Malik et al. [3].

Theorem 22. Let M=(Q, X, 1) be a fuzzy finite state
machine, and let & be a fuzzy subset of . Then
N=(Q, 8 X, 1) is a fuzzy subsystem of M if and
only if Vp, ¢qeQ, VyxeX" ddzsp)Au'(p, x g).

Prodf. Let N=(Q, §, X, 1) be a fuzzy subsystem of M.
And let g= Q. We assume that &(g) < S(p)Ax* (p, x, g
for some p=@ and x=X". Set (P Au'(p, x, @) =a
If @=0, then it is clear. Supposc «>0, then pe=4d, and
p(p, x, @ =a. Since N is a fuzzy subsystem of M,
q= 88,y €8, contradicing &(¢g)<(e. To prove the
converse, if we let ¢=8%6,) for every o, then there
exist p=3d, and x= X" such that p*(p, x, g) = a. By the
hypothesis &) = (DA L"(p, x, dd=a (X0 if a=0),
which implies that ge §,. This completes the proof.

Let M= (Q, X, 1) be a fuzzy fipite state machine.
Now we consider the crisp subset T of Q. Let v be a
fuzzy subset of TxXx T The fuzzy finite state
machine N= (T, X, V) is called a submachine of M
f4] if G) Horwxwr=v, and () S(DcCT.

If we consider fuzzy subsystems N=(Q, T, X, )
for crisp subsets T of @ SYT,) =S4T cCT for all
@. Since SN =5(T=857T), N is a fuzy
subsystem if and only if S(7)C T Thus for crsp
subsets T of @, (@, T, X, ) is a fuzzy subsystem
of M=(Q, X, #) if and only if (7, X, ») is a
submachine of M, where v= | r,x.7. This implies
that the notion of fuzzy subsystems is the generaliza-
tion of that of submachines. Let M= (Q, X. ») be a
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fuzzy finite state machine. Let I*(g) denote the set of all
immediate o-successors of ¢g=A. If TCQ, then we
define I°(T) = K I'(9)lgs T}. Clearly, I°(T)
subset of $%(7). In the following lemma we know that
if we only check for I(8,) to be a subset of &,
(Q, 8, X, 1) is a fuzzy subsystem of M= (Q, X, 1.
Lemma 2.3. Let M= (@, X, u) be a fuzzy finite state
machine. Let & be a fuzzy subset of @ Then N= (&,
8, X, 1) is a fuzzy subsystem of M if and only if
(6 <é, Veaslo, 1l

is a

Proof T N=(Q, 6, X, g is a fuzzy subsystem of M,
S(6,)<68, for Vas[0, 1]. But since I°(8,)
subset of 5%6,), I(8,)C &, To prove the converse, let

is a

& be a fuzzy subset of @ and assume I(8,)C &,
Vaes [0, 1]. Let g= $%38,), then there exist p< 48, and
x=X" such that

2, x, d=alpep, x @20 i a=0).
If x= 4, then

e o, A, @=a(u"(p, 4, >0 if a=0).

By the definition of empty word A, p= ¢. Hence g= 8,.
Suppose that x is not empty word, say x= aias*** a.,,
where aq;=X, 1=1,-,#n. Then

2 (g, %, @ = w0, ayra,
= r\g r}/EQ#(p,&'h?’I)/\#(?’l,dzs rz) N\

N o2, @1, T DN 41, @, Q)
za (2014 a=0),

which [ollows that there exist s +-,5,-;= @ such that
(D, ay, 51), 4081, @, 50), 7 (8 3,

ap—1, Sn—l),fl(s n—1s CZ,,'L]) =a

( >0 if a=0).
Since pe 8, and g, = X, 5, [%(5,). Hence by hypothesis,
Also sp=I7(8,) C 8,
continue the process, then we oblain ¢ 6.

51E 84 a;= X implies If we

Hence
S%(8,) is a subset of &, which proves that N is a
fuzzy subsystem of M.

If we follows the proof of Theorem 2.2 after replacing

X p* and 8% with X, 2 and I° respectively, then by
Lemma 2.3 we obtain the following result.

Theorem 2.4. M=(Q, X, 1) be a fuzzy finite state
machine and let & be a fuzzy subset of @. Then
N=(Q,8,X, 1) is a fuzzy subsystemn of M if and only
if Vp q=Q VaeX,8(g =8N (b, a.q).

Theorem 25. Let M= (Q,X,x) be a fuzzy finite state
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machine. Let N =(Q,6 X,1), Ny=(Q, 8, X, 1) be

fuzzy subsystemns of M. Then the following assertions
hold.
(1) NUN,=(Q,8 U8, X,0) 15 a fuzzy subsystem
of M,
(2) NNNy=(Q,8,MN8,X,u) is a fuzzy subsystem
of M.

Progf. (1) For each g,
S(8,U8) 0 = S((8).U(8))
= S8 U S ((8) )
C(8)U(8),
= (8,U &),

Hence N;UN, is a fuzzy subsystem of M.
(2) can be proved similarly.

Let M= (Q,X,u) be a fuzzy finite state machine and
let A be a subset of @ For each x= X, define a
subset SS(A) of @ by

S:A) = {g=Qlu(p,x,@)za ( >0 if a=0) for p= A}.

For each x= X", 8% is in fact a map on the power sel
of @ and \UJ, xS%=5% The composition of these
maps SI,xe X", is given by the following lemma.
Lemma 2.6 Let M= (@, X.,u) be a fuzzy finite state
machine, and let x,y=X". Then S;-S;= 5y,

Progf. L.et A be a subset of @ and let »= 85 - 5;(A).
Then there exists g< S3(A) such that

g (g, y,nze ( Y0 if a=0).
And ¢g=Si(A) if and only il there exists p=A such
that

p(pxgza (X0 if a=0).
Thus

20,2y, Nz " (0,5, N\p (g, v, N = a
( >0if a=0),

which implies that S5 - S:(A)CS(4) for Ac@

Conversely, if »=SL(A) then there exists p=A such
that
L za (200 a=0),

and

25, 2y, 1) = Ve (g, 0, ) A (g, v, Dla= Q).
Thus for some g= @,

LA\ (gD =e (X0 if a=0).



It follows that »e S5(S5(A4)). Therefore S3(S%(A)) =
S2,(A).

Definition 2.7. Tet M, =(@, X, ) and M,=
(@, X5, 1) be two fuzzy finite state machines. A pair
(/, 2 of mappings, f: ©—@, and g: X;— X, is called
a fuzzy homomorphism, written by (f &) © M), — M.,
it AS™(0) CSua(AD), ie, for every q=S%p),
A & Syn(Ap), pa=s Qrxe X, 0<a<]. And this fuzzy
homomorphism (£, g): M;— M, is called strong if for
every flg) = S%,(AP), there exists ¢ =7 HAg) such
that ¢ =S8:p), pa.de@ =X, Ve=[0, 1]. In
particular, if X, =X, and g is the identity mep, then
we simply write f: M;M, and say that fis a (strong)
fuzzy homomorphism accordingly.
This definition by the maps S° is in fact the
equivalent form of those defined in [4] by the following
proposition.
M= (@, X, ) and M=
(@, Xz, 43) be fuzzy finite state machines and let
(f, &): Mi—M, Then
() (& is a fuzzy homomorphism if and only il
b, %, @) < p(f(0), 2(x), f(0)), Vp,q=Q, and
Vze X

(2) (/,# is a strong fuzzy hornomorphism if and only
if w(f (). g(x), A@) = Vui(p,x,Dlte @,
A =A@}, Vd,ae @, Vxe X,

Proposition 2.8. Lel

FProgf. (1) can be easily obtained from the definition of
Fuzzy homomorphism.

(2) Supposc that (f.@:M—M, is a strong fuzzy
homomorphism. Let p.ge@, and and set
o= p3(Ap), 2(x),K@). Then Ag) e S%(Ap), which
implies by hypothesis that there exists ¢ =7 Y(Ag)
such that ¢ =S57(p). Thus w(p,x.d)=a (0 if a=0),
Ra) = Ad). But since (£ g is a fuzzy homomorphism,
(o, 7) must be less than or equal to e for

Vre= f ' (Aq). Hence
(D), &(x), La)) = i, %, D ts Q AD = Ag)}.

The converse can be easily derived.

re X,

Let /M, —M,, and let & be a fuzzy subset of .
Then the [uzzy subset A8 of @, is defined by
(A= Ry 0=e=1. We note that if g= s, then

VAN =@, Ad)=q if f7(a)*4,

A& = ,

0 it /7 (g) = ¢.

On the other hand, let A be a fuzzy subset of Q.. We
define a fuzzy subset /~YA) of @ by (F7'(A), =
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F7UA), 0<a<1. Then 7~ YA)(p) = AAP), V=@,

Theorem 2.9. Let M =(0,,X),1y) and M,=
(Qy, X5, 15) be fuzzy finite state machines and let
(f,@):M—M, be a fuzzy
Ny = (@, 4, X5, p13) 18 a fuzzy subsystem of M,, then
Ny = (@ F M), X1, 1)) is a fuzzy subsystem of M.

Proof. Let A be a fuzzy subset of Q. If F XA = ¢,
then (@,¢, X, u) is a (rvial fuzzy
Suppose f M) #¢, and let pe SHFTIAL), 0<a<].
Then there exists p' =@, such that peS$%(p) and
A=l for xeX). Since (f,9):M—M, is a fuzzy
homomorphism, A p) € S5, (A2)) ©8%s(4.). The fact
that N; is a fuzzy subsystem of M, implies Ap)eA,,
that is, pe s 1(A,). Hence N, = (@7 '), X}, 1) is a
fuzzy subsystem of M. '

homomorphism.  If

subsystem.

Theorem 2.10 Let
(&, Xy, )
(/.8 Mi—M; be a strong fuzzy homomorphism, where

M, = (Ql,Xh/-ll) and Mg=

be fuzzy finite state machines and let

/.g are onto. If Ny = (@, 8,X, ) is a fuzzy subsystem
of M, then N;= (@, A0, Xs, p5) is a fuzzy subsystem
of M,.

Proof. Suppose ¢ is a nonempty subset of €, dand let
re 8(A3,)). Then there exists some pe4, such that
re Sy(Ap) for yeX;. Since f and g are onto, there
exist ¢= @ xeX; such that Ag =» and y= Ax),
thus  Ag)e S5y(A). Strong fuzzy homormorphism of
(/, @ implies ¢ =S, Ad)eAg for some ¢ =@,
By the definition of a fuzzy
M, g =8, which implies »= flg) = Aq¢) = AS.). Hence
Ny = (@5, £8).X5,115) is a fuzzy subsystem of M,.

subsystem N, of
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