GEOMETRY OF ORTHONORMAL FRAME BUNDLES

KYUNG BAI LEE

ABSTRACT. On \mathbb{R}^{p+q+1} with the non-degenerate symmetric bilinear form F of type (p,q+1), the pseudo-sphere is defined by $S^{p,q} = \{x \in \mathbb{R}^{p+q+1} : F(x,x) = 1\} \approx \mathbb{R}^p \times S^q \subset \mathbb{R}^{p,q+1}$. In this paper, we shall study the geometries modelled on the orthonormal frame bundle $SO(S^{p,q})$ of the pseudo-sphere $S^{p,q}$. This is a principal $G = SO_0(p,q)$ -bundle over $S^{p,q}$. With respect to a natural pseudo-Riemannian metric, the group of weakly G-equivariant isometries of $SO(S^{p,q})$ turns out to be $Isom_G^0(SO(S^{p,q})) = SO_0(p,q+1) \times SO_0(p,q)$.

Let W be a connected, pseudo-Riemannian manifold of type (p,q), and let SO(W) be time-space orientation-preserving orthonormal frame bundle of W. That is, SO(W) is a sub-bundle of the bundle of frames L(W) with structural group $G = SO_0(p,q) = O^{++}(p,q)$. We shall equip SO(W) with a pseudo-Riemannian metric using the Levi-Civita connection. More precisely, the horizontal spaces have the same metric as the base space W, and are orthogonal to the fiber which has the $-\frac{1}{2(p+q-1)}$ times the Killing-Cartan form. The space SO(W) with such a metric appears naturally. For example, if W is a 2-dimensional manifold, then SO(W) is its unit tangent bundle. Thus,

 $SO(\mathbf{H}^2) = PSL(2,\mathbb{R}), \quad SO(S^2) = SO(3), \quad SO(\mathbb{R}^2) = SO(2) \times \mathbb{R}^2.$ Note that $\widetilde{SO}(W)$ for these are model spaces for 3-dimensional geometries.

The main concern of this paper is to study the group $\mathrm{Isom}_G(\mathrm{SO}(W))$ of fiber-preserving isometries of $\mathrm{SO}(W)$. To describe the results, let $\mathrm{Isom}(W)$ denote the group of isometries of W, $\Phi(u)$ the homogeneous holonomy of W through a frame $u \in \mathrm{SO}(W)$, and let C(u) be its centralizer in $\mathrm{SO}_0(p,q)$. Let $\mathrm{Isom}^{++}(W)$ be the group of time-space orientation-preserving isometries of W. For a group G, $\ell(G)$ and r(G) denote the left and right translations, respectively. The preimage of $\mathrm{Isom}^{++}(W)$ under

Received October 16, 2000.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C50; Secondary 53C50. Key words and phrases: frame bundle, indefinite metric, isometry group.

the natural homomorphism $\text{Isom}_G(\text{SO}(W)) \to \text{Isom}(W)$ is denoted by $\text{Isom}_G^{++}(\text{SO}(W))$. The main results are

- A. There is an isometric action of C(u) on SO(W) as "left translations" on each fiber.
- B. Isom⁺⁺_G(SO(W)) is naturally isomorphic to $(C(u) \cdot SO_0(p,q)) \times Isom^{++}(W)$.
- C. If W is a pseudo-Riemannian homogeneous manifold, then SO(W) contains a sub-bundle which is isometric to the Lie group $Isom^{++}(W)$ with a natural left invariant metric.
- D. When $W = S^{p,q} \approx \mathbb{R}^p \times S^q$, the pseudo-sphere in $\mathbb{R}^{p,q+1}$, $SO(S^{p,q})$ is a principal $SO_0(p,q)$ bundle over $S^{p,q}$, and $Isom_G^{++}(SO(W)) = SO_0(p,q) \times SO_0(p,q+1)$.
- E. The pseudo-sphere $S^{p,q}$ does not have a compact space form if $1 \le p \le q$.

Some of the results for Riemannian case can be found in [1].

1. Pseudo-Riemannian metric

1.1. In \mathbb{R}^n with the natural basis, we consider a non-degenerate symmetric bilinear form

$$F(x,y) = -\sum_{i=1}^{p} x_i y_i + \sum_{j=p+1}^{p+q} x_j y_j$$

for $(x,y) \in \mathbb{R}^n$ and $n = p + q, n \ge 2$. We say the bilinear form F has type (p,q). The space \mathbb{R}^n with the bilinear form F is written as $\mathbb{R}^{p,q}$. Let

$$I_{p,q} = egin{bmatrix} -I_p & O \ O & I_q \end{bmatrix} \in \mathrm{GL}(p,\mathbb{R}) imes \mathrm{GL}(q,\mathbb{R}),$$

and let

$$O(p,q) = \{ A \in GL(n,\mathbb{R}) : {}^{t}AI_{p,q}A = I_{p,q} \}.$$

Then O(p,q) is the orthogonal group of the bilinear form F. Note that O(p,q) has 4 components for $p,q \ge 1$, denoted by $O^{++}(p,q)$, $O^{--}(p,q)$, $O^{+-}(p,q)$, $O^{-+}(p,q)$; O(p,q) has two components for p=0 or q=0. We shall denote $O^{++}(p,q)$ by $SO_0(p,q)$. This is the connected component containing the identity. An automorphism of $\mathbb{R}^{p,q}$ in $SO_0(p,q)$ is called a time-space orientation-preserving isometry. For a matrix $A=(a_{ij})$, $A \in SO_0(p,q)$ if and only if the column vector \mathbf{a}_i 's satisfy

$$F(\mathbf{a}_i, \mathbf{a}_i) = -1, \quad F(\mathbf{a}_j, \mathbf{a}_j) = +1, \quad F(\mathbf{a}_i, \mathbf{a}_j) = 0,$$

for all $1 \le i \le p$ and $p+1 \le j \le p+q$. From ${}^tAI_{p,q}A = I_{p,q}$, $\det(A) = \pm 1$. If $A \in SO_0(p,q)$, then $\det(A) = 1$ but note that same is true for elements of $O^{--}(p,q)$.

2. Orthonormal frame bundle of a pseudo-Riemannian manifold

2.1. Let M be a differentiable manifold. A pseudo-Riemannian metric on M is a differentiable field $g = \{g_x\}_{x \in M}$ of non-degenerate symmetric bilinear forms g_x on the tangent spaces M_x of M. The g_x are the inner products on the tangent spaces. The metric is Riemannian metric if each g_x is positive definite. If the bilinear forms g_x have type (p,q), M is called a pseudo-Riemannian manifold of type (p,q).

We define a metric on $SO_0(p,q)$. For $p+q \leq 2$, $SO_0(p,q)$ is abelian and has an obvious bi-invariant metric. For p+q > 2, $SO_0(p,q)$ is semi-simple. We define a symmetric bilinear, ad(G) invariant form on the tangent space of $SO_0(p,q)$ at the identity:

$$\langle A, B \rangle = -\frac{1}{2(p+q-1)}\phi(A, B)$$

where $\phi(A, B) = (p+q-1)\operatorname{trace}(\operatorname{ad}(A)\operatorname{ad}(B))$ is the Killing-Cartan form on the Lie algebra $\mathfrak{o}(p,q)$ of $\operatorname{SO}_0(p,q)$. This is a bi-invariant pseudo-Riemannian metric of type $(pq, \frac{1}{2}(p^2+q^2-p-q))$ and is unique up to scale factor.

EXAMPLE 2.2 (Killing-Cartan form of $SO_0(1,2)$). Choose a basis for o(1,2) as follows:

$$e_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Their exp are

$$\exp(te_1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos t & \sin t \\ 0 & -\sin t & \cos t \end{bmatrix}, \quad \exp(te_2) = \begin{bmatrix} \cosh t & \sinh t & 0 \\ \sinh t & \cosh t & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
$$\exp(te_3) = \begin{bmatrix} \cosh t & 0 & \sinh t \\ 0 & 1 & 0 \\ \sinh t & 0 & \cosh t \end{bmatrix}.$$

Then, with respect to the basis $\{e_1, e_2, e_3\}$,

$$\mathrm{ad}(e_1) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \ \ \mathrm{ad}(e_2) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \ \mathrm{ad}(e_3) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Thus the Killing-Cartan form is defined by

$$[\phi(e_i, e_j)] = 2[\operatorname{trace}(\operatorname{ad}(e_i))(\operatorname{ad}(e_j))] = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

Note that $SO_0(1,2)$ is isomorphic to $PSL(2,\mathbb{R})$.

- 2.3. Let W be a pseudo-Riemannian manifold of type (p,q). Let SO(W) be the time-space orientation-preserving orthonormal frame bundle of W. That is, SO(W) is a sub-bundle of the bundle of frames L(W) with fiber (and structural group) $SO_0(p,q) = O^{++}(p,q)$. We shall equip SO(W) with a pseudo-Riemannian metric using the Levi-Civita connection. More precisely, the horizontal spaces have the same metric as the base space W, and are orthogonal to the fiber. Such a metric is of type $(p+pq,\frac{1}{2}(p^2+q^2-p+q))$. The universal covering space $\widetilde{SO}(W)$ has a pseudo-Riemannian metric induced from SO(W).
- 2.4. Let $\operatorname{Isom}^{++}(W)$ be the group of time-space orientation-preserving isometries of W. Therefore, $f \in \operatorname{Isom}^{++}(W)$ if and only if the induced map $f_*: L(W) \to L(W)$ (on the frame bundle) preserves the sub-bundle $\operatorname{SO}(W)$.

Each point $u \in SO(W)$ is considered as an isomorphism

$$u: \mathbb{R}^{p,q} \to T_{\pi(u)}(W)$$

where $\pi : SO(W) \to W$ is the projection. The group $SO_0(p,q)$ acts on SO(W) from the right naturally, by composition.

$$SO(W) \times SO_0(p,q) \to SO(W), \qquad (u,a) \mapsto u \circ a;$$

namely, for $a \in SO_0(p, q)$ and $u \in SO(W)$,

$$u \circ a: \mathbb{R}^{p,q} \xrightarrow{a} \mathbb{R}^{p,q} \xrightarrow{u} T_{\pi(u)}(W)$$

is a new isomorphism so that $u \circ a \in SO(W)$. With this right $SO_0(p,q)$ -action, SO(W) is a principal $SO_0(p,q)$ -bundle.

LEMMA 2.5. The principal $SO_0(p,q)$ -action on SO(W) is isometries.

Proof. Let $a \in SO_0(p,q)$. Let $X \in T_v(SO(W))$ be a horizontal vector, and let $\gamma(t)$ be a horizontal curve in SO(W) fitting X. Then,

$$(r_a)_*(X) = \frac{d}{dt}\Big|_{t=0} (\gamma(t) \circ a) = X \circ a.$$

Since $a \in SO_0(p,q)$ is an isometry of W, the homomorphism

$$(r_a)_*: T_v(\mathrm{SO}(W))_H \longrightarrow T_{v \circ a}(\mathrm{SO}(W))_H$$
 (horizontal spaces)
 $X \mapsto X \circ a$

is an isometry.

Now let $X \in T_v(SO(W))$ be a vertical vector, and let $\gamma(t)$ be a curve in $SO_0(p,q)$ starting at the identity so that $v \circ \gamma(t)$ fits X. Then,

$$(r_a)_*(X) = \frac{d}{dt}\Big|_{t=0} (v \circ \gamma(t) \circ a) = \left(\frac{d}{dt}\Big|_{t=0} (v \circ \gamma(t))\right) \circ a = X \circ a.$$

Since $a \in SO_0(p, q)$ and the metric on the fiber $SO_0(p, q)$ is bi-invariant, the homomorphism

$$(r_a)_*: T_v(\mathrm{SO}(W))_V \longrightarrow T_{v \circ a}(\mathrm{SO}(W))_V \text{ (vertical spaces)} X \mapsto X \circ a$$

is an isometry.

2.6. Let us write $SO_0(p,q)$ by G. We denote the weakly G-equivariant (with respect to the principal right G-action) isometries of SO(W) by $Isom_G(SO(W))$. More precisely, $h \in Isom_G(SO(W))$ if there is an automorphism α of $SO_0(p,q)$ such that $h(u \circ x) = h(u) \circ \alpha(x)$ for all $u \in SO(W)$ and $x \in SO_0(p,q)$.

A weakly G-equivariant isometry of SO(W) induces an isometry of W, giving rise to a natural homomorphism

$$\widetilde{\pi}: \mathrm{Isom}_G(\mathrm{SO}(W)) \to \mathrm{Isom}(W).$$

Let

$$\mathcal{K} = \ker(\widetilde{\pi}),
\operatorname{Isom}_{G}^{++}(\operatorname{SO}(W)) = \widetilde{\pi}^{-1}(\operatorname{Isom}^{++}(W)).$$

Then

$$1 \to \mathcal{K} \to \mathrm{Isom}_G^{++}(\mathrm{SO}(W)) \to \mathrm{Isom}^{++}(W) \to 1$$

is exact.

LEMMA 2.7. The homomorphism $\operatorname{Isom}_{G}^{++}(\operatorname{SO}(W)) \to \operatorname{Isom}^{++}(W)$ naturally splits. Furthermore, $\operatorname{Isom}^{++}(W)$ commutes with the right action of $\operatorname{SO}_0(p,q)$ on $\operatorname{SO}(W)$.

Proof. Let $f \in \text{Isom}^{++}(W)$. Then f naturally induces a map $\widetilde{f} : SO(W) \to SO(W)$ defined by

$$\widetilde{f}(u) = f_* \circ u: \ \mathbb{R}^{p,q} \stackrel{u}{\longrightarrow} T_{\pi(u)}(W) \stackrel{f_*}{\longrightarrow} T_{f(\pi(u))}(W).$$

Since f is an isometry of W, the induced map \widetilde{f} of $\mathrm{SO}(W)$ leaves the connection form invariant [3, p. 226, Theorem 1.3]. This means that, for each $u \in \mathrm{SO}(W)$, \widetilde{f} maps the horizontal subspace of $T_u(\mathrm{SO}(W))$ to the horizontal subspace of $T_{\widetilde{f}(u)}(\mathrm{SO}(W))$. However, the metric on $\mathrm{SO}(W)$ is defined so that the horizontal subspaces are isometric to the base space. Since f was an isometry of the base space, \widetilde{f} induces an isometry on the horizontal spaces.

The map \widetilde{f} commutes with the right action of $SO_0(p,q)$ on SO(W). That is, $\widetilde{f}(u \circ a) = f_* \circ (u \circ a) = (f_* \circ u) \circ a = \widetilde{f}(u) \circ a$ for $u \in SO(W)$ and $a \in SO_0(p,q)$. Let $\sigma : \mathfrak{o}(p,q) \to \mathfrak{X}(SO(W))$ be the fundamental vector field defined by $\sigma(A)_u = \frac{d}{dt}|_{t=0}(u \cdot \exp tA)$. Then $(\widetilde{f})_*(\sigma(A)_u) = \frac{d}{dt}|_{t=0}f_* \circ (u \cdot \exp tA) = \frac{d}{dt}|_{t=0}(f_* \circ u) \cdot \exp tA = \sigma(A)_{\widetilde{f}(u)}$ for each $A \in \mathfrak{o}(p,q)$. This shows that $(\widetilde{f})_*$ preserves the metric on the vertical subspaces as well. Consequently, \widetilde{f} is an isometry of SO(W). Clearly $f \mapsto \widetilde{f}$ is a group homomorphism.

2.8. Fix a point $u \in SO(W)$. Let $\Phi(u) \subset G$ be the holonomy group of the metric connection with reference point u. See [3, p. 72]. Let $C_G(\Phi(u))$ be the centralizer of $\Phi(u)$ in G and let $\mathcal{Z}(G)$, the center of G.

LEMMA 2.9. Let $g \in \mathcal{K}$. Then the restriction of g to each holonomy bundle P(u) is a right translation by an element of $SO_0(p,q)$.

Proof. Define a map
$$\lambda: \mathrm{SO}(W) \to \mathrm{SO}_0(p,q)$$
 by

$$g(w) = w \circ \lambda(w).$$

We claim that λ is constant on each P(u). Let γ be a horizontal curve in SO(W). Then by Leibniz rule,

$$g_*(\gamma'(t_0)) = \frac{d}{dt}(\gamma(t) \circ \lambda(\gamma(t)))|_{t_0} = \frac{d}{dt}(\gamma(t_0) \circ \lambda(\gamma(t)))|_{t_0} + \gamma_{\lambda(\gamma(t_0))*}(\gamma'(t_0)).$$

Notice that the first summand is vertical and the second is horizontal. Since g is an isometry, g_* maps the horizontal vector $\gamma'(t_0)$ to a horizontal vector. Thus

$$\frac{d}{dt}(\gamma(t_0)\circ\lambda(\gamma(t)))|_{t_0}=0 \text{ for all } t_0.$$

This shows that λ is constant along γ . Since any two points in P(u) can be connected via a horizontal path, the conclusion of the lemma follows.

The right action of $G = SO_0(p,q)$ on SO(W), r(G) belongs to \mathcal{K} by Lemma 2.8, and is transitive on the fiber. Therefore, to understand the isometry group of SO(W), it is enough to understand the stabilizer of the action of \mathcal{K} .

PROPOSITION 2.10. For $u \in SO(W)$, let K_u be the stabilizer of the K-action on SO(W). Then

- 1. \mathcal{K}_u fixes the whole sub-bundle P(u).
- 2. \mathcal{K}_u is naturally isomorphic to $C_G(\Phi(u))/\mathcal{Z}(G) \subset \operatorname{Inn}(G)$, where $C_G(\Phi(u))$ is the centralizer of $\Phi(u)$ in G.

Proof. Statement (1) follows directly from the preceding Lemma.

(2) We identify the fiber $\pi^{-1}(\pi(u))$ with G via $u \longleftrightarrow e$. Since elements of $\text{Isom}_G(\text{SO}(W))$ are weakly G-equivariant, r(G) is normal in $\text{Isom}_G(\text{SO}(W))$, and hence in \mathcal{K} .

Let $\mathrm{M}_G(\mathrm{SO}(W),G)$ denote the group of all G-equivariant maps from $\mathrm{SO}(W)$ to G. That is, $\lambda:\mathrm{SO}(W)\to G$ is an element of $\mathrm{M}_G(\mathrm{SO}(W),G)$ if and only if

$$\lambda(v \circ a) = a^{-1} \circ \lambda(v) \circ a$$

for all $a \in G$. Such a map λ induces a map $\widetilde{\lambda} : SO(W) \to SO(W)$ by

$$\widetilde{\lambda}(v) = v \circ \lambda(v).$$

At a general point,

$$\widetilde{\lambda}(v\circ a)=(v\circ a)\circ \lambda(v\circ a)=(v\circ a)\circ (a^{-1}\lambda(v)\circ a)=v\circ \lambda(v)\circ a=\widetilde{\lambda}(v)\circ a,$$

showing that $\widetilde{\lambda}$ is G-equivariant. It is well known [5] that

$$M_G(SO(W), G) \cdot r(G) = r(G) \times_{\mathcal{Z}(G)} M_G(SO(W), G)$$

is the full group of weakly G-equivariant maps of SO(W) inducing the identity on W. Thus,

$$\mathcal{K} \subset \mathrm{M}_G(\mathrm{SO}(W), G) \cdot r(G).$$

Let $g \in \mathcal{K}_u$. Then g is of the form $g = \widetilde{\lambda} \circ r(c^{-1})$. Now g(u) = u yields

$$u \circ \lambda(u) \circ c^{-1} = u$$

so that $\lambda(u) = c$. Then, for any $k \in G$,

$$g(u \cdot k) = (\widetilde{\lambda} \circ r(c^{-1}))(u \cdot k) = \widetilde{\lambda}(u \cdot kc^{-1}) = \widetilde{\lambda}(u) \cdot kc^{-1} = u \cdot ckc^{-1}.$$

Thus g gives rise to a unique element of $\operatorname{Inn}(G)$, defining an injective homomorphism $\mathcal{K}_u \to \operatorname{Inn}(G)$.

By (1), g fixes P(u), hence it also fixes $u \cdot \Phi(u)$. Therefore, g is an inner automorphism of G leaving the subgroup $\Phi(u)$ fixed. Thus $\mathcal{K}_u \subset C_G(\Phi(u))/\mathcal{Z}(G)$.

Conversely, let $c \in C_G(\Phi(u))$. Choose any "cross section" to the holonomy bundle $P(u) \to W$; that is, a map $s : W \to P(u)$ which is not necessarily continuous, satisfying $\pi \circ s = \text{id}$. Then every point of SO(W) is of the form $s(x) \cdot k$ for some $x \in W$ and $k \in G$ Now define a map $\hat{c} : SO(W) \to SO(W)$ by

$$\hat{c}(s(x) \cdot k) = s(x) \cdot ckc^{-1}.$$

This is well defined because, if $t: W \to SO(W)$ is another cross section, then s and t are related by elements of P(u). More precisely, let $s(x) \cdot k = t(x) \cdot k'$. Then $t(x) = s(x) \cdot h$ for some $h \in \Phi(u)$, and hence $k' = h^{-1}k$. Therefore,

$$t(x) \cdot ck'c^{-1} = s(x) \cdot hch^{-1}kc^{-1} = s(x) \cdot ckc^{-1}$$

since c commutes with $\Phi(u)$. We could have used a local smooth section for s. This implies that \hat{c} is smooth. We claim that \hat{c} is in fact an isometry. Let $s(x) \cdot k \in SO(W)$ be an arbitrary point. On a horizontal neighborhood (i.e., k fixed, and x varying),

$$\hat{c}(s(x) \cdot k) = s(x) \cdot ckc^{-1} = (s(x) \cdot k) \cdot (k^{-1}ckc^{-1})$$

so that $\hat{c} = r_{k^{-1}ckc^{-1}}$. Thus, for a horizontal vectors X, $\hat{c}_*(X) = r_{k^{-1}ckc^{-1}*}(X)$. On the vertical vectors, recall that G has a bi-invariant metric and so the conjugation by c is already an isometry. Consequently, \hat{c} is an isometry of SO(W) inducing the identity on W. Thus we have shown that the homomorphism $\mathcal{K}_u \to C_G(\Phi(u))/\mathcal{Z}(G)$ is an isomorphism.

THEOREM 2.11. There is a left action of $C_G(\Phi(u))$ as left translations on each fiber, and $\operatorname{Isom}_G^{++}(\operatorname{SO}(W)) = \left(\ell(C_G(\Phi(u))) \times_{\mathcal{Z}(G)} r(G)\right) \times \operatorname{Isom}^{++}(W)$.

Proof. By the previous lemma, we have

$$Isom_{G}^{++}(SO(W)) = \mathcal{K} \rtimes Isom^{++}(W)$$

$$= (r(G) \rtimes \mathcal{K}_{u}) \rtimes Isom^{++}(W)$$

$$= (r(G) \rtimes (C_{G}(\Phi(u))/\mathcal{Z}(G)) \rtimes Isom^{++}(W)$$

$$= (\ell(C_{G}(\Phi(u))) \times_{\mathcal{Z}(G)} r(G)) \rtimes Isom^{++}(W).$$

So, it only remains to understand how the inner automorphism group $C_G(\Phi(u))/\mathcal{Z}(G)$ gives rise to the left multiplication action $\ell(C_G(\Phi(u)))$. For any $c \in C_G(\Phi(u))$, define $\ell_c : SO(W) \to SO(W)$ by

$$\ell_c(s(x) \cdot k) = s(x) \cdot ck$$

so that $\ell_c = \hat{c} \circ r_{c^{-1}}$. (The map \hat{c} was defined in the proof of Lemma 2.10). This finishes the proof of theorem.

COROLLARY 2.12. For the two extreme cases, we have the following:

- 1. If $\Phi(u) = SO_0(p, q)$, then $Isom_G^{++}(SO(W)) = r(G) \times Isom^{++}(W)$.
- 2. If $\Phi(u)$ is trivial, then

$$\operatorname{Isom}_{G}^{++}(\operatorname{SO}(W)) = (\ell(G) \times_{\mathcal{Z}(G)} r(G)) \rtimes \operatorname{Isom}^{++}(W).$$

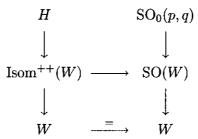
Example 2.13. If $W = \mathbb{R}^{p,q}$ with the indefinite metric of type (p,q), then the bundle $\mathrm{SO}(W)$ has trivial holonomy so that $C_G(\Phi(u)) = G$. Thus $\mathrm{Isom}_G^{++}(\mathrm{SO}(W)) = (G \times_{\mathcal{Z}(G)} G) \rtimes \{\mathbb{R}^{p,q} \rtimes O^{++}(p,q)\}$ since $\mathrm{Isom}^{++}(W) = \mathbb{R}^{p,q} \rtimes O^{++}(p,q)$.

A pseudo-Riemannian manifold is homogeneous if Isom(W) acts on W transitively.

THEOREM 2.14. If W is a pseudo-Riemannian homogeneous manifold, then SO(W) contains a sub-bundle which is isometric to the Lie group $Isom^{++}(W)$ with a left invariant metric.

Proof. Fix $u \in SO(W)$, and let $x = \pi(u) \in W$, where $\pi : SO(W) \to W$ is the projection. Let $H = Isom^{++}(W)_x$, the stabilizer at x.

We have two bundles over W:



Both bundles are principal (with right actions). Define $\phi: H \to SO_0(p,q)$ by $\phi(h) = u^{-1} \circ h_* \circ u$.

$$\mathbb{R}^{p+q} \xrightarrow{u} T_x(W)$$

$$\phi(h) \downarrow \qquad \qquad h_* \downarrow$$

$$\mathbb{R}^{p+q} \xleftarrow{u^{-1}} T_x(W)$$

Clearly ϕ is 1-1. Define $\psi: \mathrm{Isom}^{++}(W) \to \mathrm{SO}(W)$ by $\psi(f) = f_* \circ u$. Then $(\mathrm{Isom}^{++}(W), H) \to (\mathrm{SO}(W), \mathrm{SO}_0(p,q))$ is weakly equivariant. That is, the diagram

Isom⁺⁺(W) × H
$$\longrightarrow$$
 Isom⁺⁺(W) (f,h) \longrightarrow $f \circ h$

$$\psi \times \phi \downarrow \qquad \qquad \psi \downarrow \qquad \qquad \downarrow$$
SO(W) × SO₀(p,q) \longrightarrow SO(W) $(\psi(f),\phi(h))$ \longrightarrow $\psi(f) \circ \phi(h)$
is commutative, because $\psi(f \circ h) = (f \circ h)_* \circ u = (f_* \circ u) \circ (u^{-1} \circ h_* \circ u) = \psi(f) \circ (u^{-1} \circ h_* \circ u)$. Therefore, SO(W) contains Isom⁺⁺(W) with a natural left invariant metric.

COROLLARY 2.15. Assume W is a pseudo-Riemannian homogeneous manifold with $\mathrm{Isom}^{++}(W)_x \cong \mathrm{SO}_0(p,q)$. Then $\mathrm{Isom}^{++}(W) \hookrightarrow \mathrm{SO}(W)$ is a bundle isomorphism.

3. Orthonormal frame bundle of a pseudo-sphere

3.1. Now we specialize to the case when W is a pseudo-sphere. The quadric

$$S^{p,q} = \{ x \in \mathbb{R}^{p,q+1} | F(x,x) = 1 \}$$

is called a pseudo-Riemannian sphere. It is diffeomorphic to $\mathbb{R}^p \times S^q$ via $(x,y) \mapsto (x,\frac{y}{|y|})$. It is connected for q>0, and has 2 components if q=0.

With this pseudo-Riemannian metric, $S^{p,q}$ has constant sectional curvature +1, and $\mathrm{Isom}(S^{p,q}) = O(p,q+1)$ is the full group of isometries. The isotropy subgroup at $(0,0,\cdots,1)$ is exactly O(p,q). The connected component is $\mathrm{Isom}^{++}(W) = O^{++}(p,q+1) = \mathrm{SO}_0(p,q+1)$. By Corollary 2.15, they are equal and we have

$$SO(S^{p,q}) = Isom^{++}(S^{p,q}) = SO_0(p, q+1)$$

as bundles over $S^{p,q}$.

3.2. Geometry of $SO(S^{p,q})$. We would like to understand the metric on $SO_0(p,q+1)$ coming from the identification with $SO(S^{p,q})$. $SO_0(p,q+1)$ acts on $S^{p,q}$ transitively with isotropy subgroup is $SO_0(p,q)$ so that

$$SO_0(p,q) \to SO_0(p,q+1) \to S^{p,q}$$

is a principal $SO_0(p,q)$ -bundle.

Moreover, $S^{p,q}$ is a symmetric space with a symmetric structure $(SO_0(p,q+1),SO_0(p,q),\sigma)$, where σ is conjugation by $\begin{bmatrix} I_{p+q} & O \\ O & -1 \end{bmatrix}$. Then $SO_0(p,q)$ is the connected component of

$$(SO_0(p, q+1))_{\sigma} = Fix(\sigma, SO_0(p, q+1)).$$

Thus $SO_0(p, q + 1)/SO_0(p, q)$ is a symmetric space and the canonical decomposition of the Lie algebra is

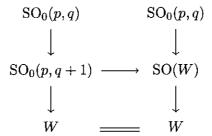
$$\mathfrak{o}(p,q+1) = \mathfrak{o}(p,q) + \mathfrak{m}$$

where $\mathfrak{o}(p,q)$ is considered as a subalgebra of $\mathfrak{o}(p,q+1)$ and \mathfrak{m} is the subspace of all matrices of the following form

$$\mathfrak{o}(p,q) = \left\{ \begin{bmatrix} A & B & 0 \\ C & D & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\}, \qquad \mathfrak{m} = \left\{ \begin{bmatrix} O & O & \xi \\ O & O & \eta \\ {}^t\xi & {}^{-t}\eta & 0 \end{bmatrix} : \xi \in \mathbb{R}^p, \eta \in \mathbb{R}^q \right\}$$

[These are +1 and -1 eigen spaces of σ , respectively]. The restriction of the Killing-Cartan form of $SO_0(p,q+1)$ on $\mathfrak g$ to $\mathfrak m$ defines a $SO_0(p,q+1)$ -invariant (indefinite) Riemannian metric on the symmetric space $S^{p,q} = SO_0(p,q+1)/SO_0(p,q)$. Furthermore, under the Killing-Cartan form, the factors $\mathfrak g$ and $\mathfrak m$ are orthogonal.

Thus our metric on SO(W) and the metric on $SO_0(p, q+1)$ have the following properties: With the bundle isomorphism,



- 1. the metrics on W are the same
- 2. the metrics on $SO_0(p,q)$ are the same
- 3. With the same holonomy bundle, the fiber is orthogonal to the base.

These are enough to conclude that the two spaces are isometric. See [3, p. 232, Theorem 3.4].

3.3 (Calculation of holonomy groups). Clearly $\mathfrak{o}(p,q+1) = \mathfrak{o}(p,q) + \mathfrak{m}$ as vector spaces. Furthermore, one can show that $[\mathfrak{m},\mathfrak{m}] = \mathfrak{o}(p,q)$. Now by [3, p.103, Theorem 11.1], the Lie algebra of the holonomy group is generated by $[\mathfrak{m},\mathfrak{m}]_{\mathfrak{o}(p,q)}$, the $\mathfrak{o}(p,q)$ component of $[\mathfrak{m},\mathfrak{m}]$. But since $[\mathfrak{m},\mathfrak{m}] = \mathfrak{o}(p,q)$, $[\mathfrak{m},\mathfrak{m}]_{\mathfrak{o}(p,q)} = \mathfrak{o}(p,q)$. Therefore, the holonomy group must be the whole group $SO_0(p,q)$. Now by Lemma 2.12, we have

THEOREM 3.4.
$$\operatorname{Isom}_{G}^{++}(SO(W)) = r(G) \times_{\mathcal{Z}(G)} \operatorname{Isom}^{++}(W)$$

= $SO_{0}(p, q) \times_{\mathcal{Z}(G)} SO_{0}(p, q + 1)$.

Note that in this expression, the group G acts on $SO(W) = SO_0(p,q+1)$ as right multiplication by inverse elements. The group $Isom^{++}(W)$ acts on SO(W) as lift of the isometries of W. We have seen this can be identified as left multiplication of $Isom^{++}(W) = SO_0(p,q+1)$ on $SO(W) = SO_0(p,q+1)$. Thus $(b,a) \in G \times Isom^{++}(W)$ acts on $x \in SO_0(p,q)$ by $(b,a) \cdot x = axb^{-1}$. Therefore we write $Isom^{++}(W)$ first so that $Isom^{++}_G(SO(W)) = Isom^{++}(W) \times G$. Thus, $SO_0(p,q+1) \times SO_0(p,q)$ acts on $SO(S^{p,q}) = SO_0(p,q+1)$ by

$$(\mathrm{SO}_0(p,q+1) \times_{\mathcal{Z}(G)} \mathrm{SO}_0(p,q)) \times \mathrm{SO}(S^{p,q}) \longrightarrow \mathrm{SO}(S^{p,q})$$
$$((a,b),x) \longrightarrow a \cdot x \cdot b^{-1}$$

multiplication in the Lie group $SO_0(p, q + 1)$.

3.5. On the other hand, the group $SO_0(p, q + 1)$ is semi-simple, the Killing-Cartan form defines a bi-invariant pseudo-Riemannian metric on $SO_0(p, q + 1)$. Thus

$$r(G) \subset r(SO_0(p, q + 1)) \subset Isom(SO_0(p, q + 1)).$$

One can prove that then weakly G-equivariant isometries of $SO_0(p, q+1)$ is the normalizer of r(G) in $\ell(SO_0(p, q+1)) \cdot r(SO_0(p, q+1))$, which becomes

$$r(G) \times_{\mathcal{Z}(G)} \ell(SO_0(p, q+1)).$$

Consequently, we get

$$\operatorname{Isom}_{G}^{++}(\operatorname{SO}_{0}(p,q+1)) = \operatorname{SO}_{0}(p,q) \times_{\mathcal{Z}(G)} \operatorname{SO}_{0}(p,q+1).$$

3.6. Let $\widetilde{SO}_0(p, q+1)$ be the universal covering group of $SO_0(p, q+1)$; and let $\widetilde{SO}(p, q)$ be the covering group of $SO_0(p, q)$ induced by the universal covering $\widetilde{SO}_0(p, q+1) \to SO_0(p, q+1)$; that is, $\widetilde{SO}(p, q)$ is the preimage of $SO_0(p, q)$ under this map. The principal fibering is

$$\widehat{SO}(p,q) \to \widehat{SO}_0(p,q+1) \to SO_0(p,q+1).$$

The isometry group is then

$$(\operatorname{Isom}_G)_0(\widetilde{\operatorname{SO}}(S^{p,q})) = \widetilde{\operatorname{SO}}_0(p,q+1) \times_{\mathcal{Z}} \widehat{\operatorname{SO}}(p,q)$$

where \mathcal{Z} is the diagonal subgroup which is the center of $SO_0(p, q + 1)$. Thus we have a short exact sequence

$$1 \to \widehat{SO}(p,q) \to (\operatorname{Isom}_G)_0(\widehat{SO}(S^{p,q})) \to \operatorname{SO}_0(p,q+1) \to 1.$$

4. Spaces modelled on $SO(S^{p,q})$

We shall describe the geometries of orthonormal frame bundles of some low dimensional pseudo-spheres $S^{p,q}$. The discreteness of a group Q in $SO_0(p,q+1)$ does not necessarily imply that Q acts properly on $S^{p,q}$, and in fact, such proper actions $(Q,S^{p,q})$ are quite rare. We give two examples: $S^{2,0}$ and $S^{1,2}$. The pseudo-sphere $S^{2,0}$ admits compact forms but $S^{1,2}$ does not.

THEOREM 4.1. (cf. [9, Theorem 11.1.7]) Suppose a discrete group Q acts on $S^{p,q}$ effectively and properly. If $p \leq q$, then Q is finite.

Proof. Let V be the subspace of $\mathbb{R}^{p,q+1}$ given by $x_1 = x_2 = \cdots = x_p = 0$, so $V \cap S^{p,q}$ is the equatorial sphere S^q . If $g \in GL(p+q+1,\mathbb{R})$, then $p \leq q < q+1$ implies

$$\dim(V\cap g(V))\geq 2\dim(V)-(p+q+1)>0.$$

Thus, for every $\alpha \in Q$, $\alpha(S^q)$ meets S^q .

If Q were infinite, then compactness of S^q would give us a point $x \in S^q$, a sequence $\{\alpha_i\} \subset Q$ of distinct elements, and a sequence $\{x_i\} \subset S^q$, such that $\alpha_i(x_i) \in S^q$ and $\{\alpha_i(x_i)\} \to x$. Passing to a subsequence, $\{x_i\} \to x' \in S^q$. As Q has closed orbits, this says $\alpha(x') = x$ for some $\alpha \in Q$. Then $\{\alpha^{-1}\alpha_i(x_i)\} \to \alpha^{-1}(x) = x'$, contradicting discontinuity of Q at x'. Thus Q is finite.

Example 4.2 (SO($S^{2,0}$)). For $W = S^{2,0}$, SO($S^{2,0}$) = SO₀(2,1) has a principal SO₀(2,0)-fibering structure:

$$SO_0(2,0) \longrightarrow SO_0(2,1) \longrightarrow S^{2,0}$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$
 $SO(2) \longrightarrow PSL(2,\mathbb{R}) \longrightarrow \mathbf{H}^2$

The pseudo-sphere $S^{2,0}$ has an indefinite metric of type (2,0), which is the negative of the ordinary Poincaré metric. Thus the space $SO_0(2,1)$ has an indefinite metric of type (2,1), negative of the Lorenz metric, (cf. [4]). The group of weakly $SO_0(2,0)$ -equivariant isometries is $(Isom_{SO(2,0)})_0(SO(2,1)) = SO(2,1) \times SO(2)$.

The universal covering of $SO_0(2,1)$ has a fibration

$$\widetilde{SO}_0(2,0) \longrightarrow \widetilde{SO}_0(2,1) \longrightarrow S^{2,0}$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\mathbb{R} \longrightarrow \widetilde{PSL}(2,\mathbb{R}) \longrightarrow \mathbf{H}^2$$

The group of weakly $\widetilde{SO}_0(2,0)$ -equivariant isometries is

$$(\mathrm{Isom}_{\widetilde{\mathrm{SO}}(2,0)})_0(\widetilde{\mathrm{SO}}(2,1)) = \mathbb{R} \times_{\mathbb{Z}} \widetilde{\mathrm{SO}}(2,1).$$

Note that this is also the group of isometries for the $\widetilde{\mathrm{PSL}}(2,\mathbb{R})$ -geometry. Let $1 \to \mathbb{Z} \to \Pi \to Q \to 1$ be an central extension of \mathbb{Z} by a Fuchsian group Q. If Q is cocompact, then $H^2(Q;\mathbb{Z}) \approx \mathbb{Z} \oplus \mathrm{Torsion}$; if Q is finitely generated and not cocompact, then $H^2(Q;\mathbb{Z})$ is a direct sum of finite cyclic groups corresponding to the conjugacy classes of the maximal finite subgroups of Q.

(Structure Theorem) [4]. Let $1 \to \mathbb{Z} \to \Pi \to Q \to 1$ be an central extension of \mathbb{Z} by a Fuchsian group Q. Then Π embeds into $(\operatorname{Isom}_{\widetilde{\mathrm{SO}}(2,0)})_0(\widetilde{\mathrm{SO}}(2,1))$ if and only if $[\Pi] \in H^2(Q,\mathbb{Z})$ has infinite order.

This embedding yields $\Pi \backslash P$ as a Seifert orbifold with a complete Lorentz metric of constant curvature. The fibers are time-like geodesics. If $Q \backslash S^{2,0}$ is non-compact, then each $[\Pi]$ embeds. The same construction also yields embeddings of Π into $\widetilde{\mathrm{Isom}}(\widetilde{\mathrm{PSL}}(2,\mathbb{R}))$ and $\Pi \backslash P$ is a Seifert orbifold with the 3-dimensional $\widetilde{\mathrm{PSL}}(2,\mathbb{R})$ -geometry. See [6] and [4] for the embeddings.

EXAMPLE 4.3 (SO($S^{1,2}$)). For $W = S^{1,2}$, SO($S^{1,2}$) = SO₀(1, 3) has a principal SO₀(1, 2)-fibering structure:

$$SO_0(1,2) \longrightarrow SO_0(1,3) \longrightarrow S^{1,2}$$
.

Since $\pi_1(SO_0(1,3)) = \mathbb{Z}_2$ and $\pi_1(SO_0(1,2)) = \mathbb{Z}$, the bundle is non-trivial. Then $(Isom_{SO(1,2)})_0(SO(S^{1,2})) = SO_0(1,2) \times SO_0(1,3)$ and the action on $SO(S^{1,2}) \approx SO_0(1,3)$ is given by

$$(a,b)x = b \cdot x \cdot a^{-1}$$

for $(a, b) \in SO_0(1, 2) \times SO_0(1, 3)$ and $x \in SO(S^{1,2})$.

Suppose there exists a compact space form $\Pi \backslash SO(S^{1,2})$. That is, Π is a discrete subgroup of $SO_0(1,2) \times SO_0(1,3)$ which acts on $SO(S^{1,2})$ properly with $\Pi \backslash SO(S^{1,2})$ compact. [Such a Π exists]. Then $\Gamma = \Pi \cap SO_0(1,2)$ is never cocompact in $SO_0(1,2)$. If it were, the quotient $Q = \Pi/\Gamma$ will act on $S^{1,2}$ properly. By Theorem 4.1, Q must be finite. This implies that $\Pi \backslash SO(S^{1,2})$ is not compact, a contradiction.

Our model space for the geometry must be simply connected. Therefore, we take the universal covering space of $SO(S^{1,2})$ as our model space. Since $\pi_1(SO_0(1,3)) = \mathbb{Z}_2$, $\widetilde{SO}_0(1,3)$ is a double covering of $SO_0(1,3)$. Let $\widehat{SO}_0(1,2)$ be the corresponding double covering of $SO_0(1,2)$. Then $\widetilde{SO}_0(1,3)$ is a principal $\widehat{SO}_0(1,2)$ -bundle,

$$\widehat{SO}_0(1,2) \longrightarrow \widehat{SO}_0(1,3) \longrightarrow S^{1,2}.$$

Note that $\widehat{SO}_0(1,2)$ is "level 2" group in [4], and is isomorphic to $SL(2,\mathbb{R})$, since $\pi_1(\widehat{SO}_0(1,2)) = \mathbb{Z}_2$. Therefore, $\widehat{SO}_0(1,3)$ is diffeomorphic to $S^3 \times \mathbb{R}^3$. From $(\operatorname{Isom}_{SO(1,2)})_0(SO(S^{1,2})) = SO_0(1,2) \times SO_0(1,3)$, we have

$$(\operatorname{Isom}_{\widehat{SO}(1,2)})_0(\widetilde{SO}(S^{1,2})) = \widehat{SO}_0(1,2) \times_{\mathbb{Z}_2} \widetilde{SO}_0(1,3),$$

where \mathbb{Z}_2 is the diagonal center.

References

- [1] R. Fisher and K. B. Lee, *Isometry groups of orthonormal frame bundles*, Geom. Dedicata **21** (1986), 181–186.
- [2] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [3] Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publishers, New York, 1969.
- [4] R. Kulkarni and F. Raymond, 3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985), 231-268.
- [5] K. B. Lee, Infra-solvmanifolds of type (R), Quart. J. Math. Oxford 46 (1995), 185-195.
- [6] K. B. Lee and F. Raymond, Sifert Manifolds, book, to appear.
- [7] Mac Lane, Saunders, Homology, Springer-Verlag Berlin Heidelberg New York, 1975, Die Grundlehren der Math. Wissenschaften 114
- [8] T. Ochiai and T. Takahashi, The group of isometries of a left invariant Riemannian metric on a Lie group, Math. Ann. 223 (1976), 91–96.
- [9] J. A. Wolf, Spaces of constant curvature, Publish or Perish, Inc. Berkeley, 1977.

Department of Mathematics University of Oklahoma Norman, OK 73019, USA E-mail: kblee@math.ou.edu