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GEOMETRY OF ORTHONORMAL FRAME BUNDLES
Kyung Bal LEE

ABSTRACT. On RP*4'! with the non-degenerate symmetric bilin-
ear form F of type (p,g + 1), the pseudo-sphere is defined by
SP = {x g RPYIFL . F(z,x) = 1} = RP x §7 C R™9*%, In this
paper, we shall study the geometries modelled on the orthonormal
frame bundle SO(S?'%) of the pseude-sphere 579, This is a principal
G = S0¢(p, g)-bundle over 79, With respect to a natural pseudo-
Riemannian metric, the group of weakly G-equivariant isometries
of SO(S%7} turns out to be Isom%(S0(5%9)) = SOu(p,g-+ 1) x
SOD(?‘: Q)

Let W be a connected, pseudo-Riemannian manifold of type (p,q),
and let SO(W) be time-space orientation-preserving orthonormal frame
bundle of W. That is, SO(W) is a sub-bundle of the bundle of frames
L{(W) with structural group G = SOg(p,q) = Ot (p,q). We shall
equip SO(W) with a pseudo-Riemannian metric using the Levi-Civita
connection. More precisely, the horizontal spaces have the same metric
as the base space W, and are orthogonal to the fiber which has the
_ﬂiﬁq—%) times the Killing-Cartan form. The space SO(W) with such a
metric appears naturally. For example, if W is a 2-dimensional manifold,
then SO(W) is its unit tangent bundle. Thus,

SO(H?) = PSL(2,R), SO({S?) =S0(3), SO(R?) = S80(2) x R2,
Note that SB(W) for these are model spaces for 3-dimensional geome-
{ries.

The main concern of this paper is to study the group Isomeg(SO(W?})
of fiber-preserving isometries of SO{W). To describe the results, let
Isom(W) denote the group of isometries of W, ®(u) the homogeneous
holonomy of W through a frame u € SO(W), and let C(u) be its central-
izer in SOy(p, q). Let Isom™+ (W) be the group of time-space orientation-
preserving isometries of W. For a group G, £(G) and r(G) denote the left
and right translations, respectively. The preimage of Isom™*+ (W) under
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the natural homomorphism Isomg(SO(W)) — Isom(W) is denoted by
Isom} T (SO(W)). The main results are

A. There is an isometric action of C(u) on SO(W) as “left transla-
tions” on each fiber.

B. Tsomt(SO(W)) is naturally isomorphic to (C'(u) - SOg{p,q))
Isom™+{(W).

C. If W is a pseudo-Riemannian homogeneous manifold, then SO(W)
contains a sub-bundle which is isometric to the Lie group
Isom™* (W) with a natural left invariant metric.

D. When W = 5749 = RP x §9, the pseudo-sphere in RP471, SO(57+)
is a principal SOp(p, g} bundle over 579, and Isomf T (SO(W)) =
SOo(p,q) x SOp(p,q+1).

E. The pseudo-sphere SP does not have a compact space form if
l<p<gq

Some of the results for Riemannian case can be found in [1].
1. Pseudo-Riemannian metric

1.1. In R™ with the natural basis, we consider a non-degenerate sym-
metric bilinear form

P ptg
Flo,y) ==Y s+ D Zy;
i=1 J=pt+1

for (z,y) € R® and n = p + ¢,n > 2. We say the bilinear form F has
type (p,q). The space R™ with the bilinear form F is written as RP9.
Let
I = -I, O
=0 I.|€ GL(p,R) x GL(g,R),
q
and let
O(p,q) = {A € GL(n,R): ‘AL A =1I,,}.
Then O(p, ) is the orthogonal group of the bilinear form F'. Note that
O(p, q) has 4 components for p, ¢ > 1, denoted by O+ (p,q), O~ (p, q),
01t~ (p,q), O~ F{(p,q); O(p, q) has two components for p = 0or ¢ = 0. We
shall denote O7+(p, g} by SOq(p,q). This is the connected component
containing the identity. An automorphism of B9 in SOg(p, ¢) is called
a time-space orientation-preserving isometry. For a matrix A = {as; ),
A € SOy(p, ¢) if and only if the column vector a;’s satisfy

F(a,;,a@) = -1, F(aj,aj) =41, F(ai,aj) =0,
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foralll <4 < pandp+1 < j < ptq. From*Al, A = I, ,, det(A4) = £1.
If A € SOy(p, g), then det(A) = 1 but note that same is true for elements
of 077 (p,9).

2. Orthonormal frame bundle of a pseudo-Riemannian man-
ifold

2.1. Let M be a differentiable manifold. A pseudo-Riemannian met-
ric on M is a differentiable field g = {g.}sear of non-degenerate sym-
metric bilinear forms g, on the tangent spaces My of M. The g, are the
inner products on the tangent spaces. The metric is Riemannian metric
if each g, is positive definite. If the bilinear forms g, have type (p,q),
M is called a pseudo-Riemannian manifold of type (p, q).

We define a metric on SOg(p, ¢). For p+ ¢ < 2, SOy(p, ¢) is abelian
and has an obvious bi-invariant metric. For p+ ¢ > 2, SOq(p, ¢) is semi-
simple. We define a symmetric bilinear, ad(G) invariant form on the
tangent space of SOy(p, q) at the identity:

1

where ¢(A, B) = {p+q—1)trace(ad(A)ad(B)) is the Killing-Cartan form
on the Lie algebra o(p,q} of SOy{p,q). This is a bi-invariant pseudo-
Riemannian metric of type (pg, %(p2 +4¢% — p— q)) and is unique up to
scale factor.

(A,B) ==

EXAMPLE 2.2 (Killing-Cartan form of SOg(1, 2)). Choose a basis for
0(1,2) as follows:

0 0 0 010 0 0 1
eq1=10 0 1|, e=1]1 0 0|, ea=|0 0 0
0 -1 0 0 0 0 1 00
Their exp are
1 0 0 cosht sinht 0
exp(te;) = |0 cost sint|, exp(tes) = |sinht cosht 0},
0 —sint cost 0 0 1

cosht 0 sinht
exp(tes) = 0 1 0
sinht 0 cosht
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Then, with respect to the basis {e1, ez, €3},

0 -1 0 1 00 0 0 0
Thus the Killing-Cartan form is defined by

¢ 0 0 0 01 0 -1 ¢
ad(eq) = [0 0 1|, ad(es)= |0 0 0O, ad{es)=|-1 0 0f.

—4 0 0
[#{ei, €5)] = 2[trace(ad(e:))(ad(e;))] = | 0 4 0O
0 0 4

Note that SOg(1,2) is isomorphic to PSL(2, R).

2.3. Let W be a pseudo-Riemannian manifold of type (p,q). Let
SO(W) be the time-space orientation-preserving orthonormal frame bun-
dle of W. That is, SO(W) is a sub-bundle of the bundle of frames L{W)
with fiber (and structural group) SOg(p,q) = Ot (p,q). We shall equip
SO(W) with a pseudo-Riemannian metric using the Levi-Civita connec-
tion. More precisely, the horizontal spaces have the same metric as the
base space W, and are orthogonal to the fiber. Such a metric is of type
(p+pg, 1(p? +¢* — p+ g)). The universal covering space SO(W) has a
pseudo-Riemannian metric induced from SO(W).

2.4. Let Isom™** (W) be the group of time-space orientation-preserving
isometries of W. Therefore, f € Isom™+ (W) if and only if the induced
map fi : L{W} — L(W) (on the frame bundle) preserves the sub-bundle
SO(W).

Each point © € SO(W) is considered as an isomorphism

w: RPY — T,y (W)

where 7 : SO{(W) — W is the projection. The group SOq(p, g) acts on
SO(W) from the right naturally, by composition.

SO(W) x SOq(p,q) — SO(W), (u,a) — uoa;
namely, for a € SOy(p, ¢) and v € SO(W),
woa: RPE % RP4 2 Try(W)

is a new isomorphism so that uwoa € SO(W). With this right SOo(p, q)-
action, SO(W) is a principal SOu(p, g)-bundle.

LEMMA 2.5. The principal SOg(p, ¢)-action on SO(W') Is isometries.
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Proof. Let a € SOy{p, q). Let X € T,,(SO(W)) be a horizontal vector,
and let ¥(t) be a horizontal curve in SO(W) fitting X. Then,

d
(r-(0) = 2| (3(t) o) = X 0n.
Since a € SOy(p, g) is an isometry of W, the homomorphism

(ra)s ¢ To(SOWNg — Tuea(SO(W))m (horizontal spaces)
X — Xoa

is an isometry.

Now let X € T,,(SO(W)) be a vertical vector, and let ¥(¢) be a curve
in SOp(p, ¢) starting at the identity so that v o y(¢) fits X. Then,

(ra)e(X) = % _(wort)oa) = (%LU(U oy(t))) oa=Xoa.

Since a € SOp(p, g) and the metric on the fiber SOg(p, g) is bi-invariant,
the homomorphism

(ra)s : Tu(SOW v — Tuoa(SO(W))y  (vertical spaces)
X — Xoa

is an isometry. Il

2.6. Let us write SOo(p, ¢) by G. We denote the weakly G-equivariant
(with respect to the principal right G-action) isometries of SO(W) by
Isomg{(SO(W)). More precisely, A € Isomg(SO(W))} if there is an au-
tomorphism «a of SOy(p,q) such that h(u o z) = h(u) o a(x) for all
u € SO(W) and x € SOqy(p, q).

A weakly G-equivariant isometry of SO(W) induces an isometry of
W, giving rise to a natural homomorphism

7 : Isomg (SO(W)) — Isom(W).

Let
K = ker(®),
IsomiH(SO(W)) = 7 YIsom™t(W)).
Then
1 — K — IsomEH(SO(W)) — Isom™ (W) — 1
is exact.

LEMMA 2.7. The homomorphism Isom/;t(SO(W)) — Isom™ (W)
naturally splits. Furthermore, Isom*+ (W) commutes with the right
action of SOy(p,g) on SO(W).
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Proof. Let f € Isom™*(W). Then f naturally induces a map f:
SO{W)} — SO{W) defined by

Fluy = foou: BP0y T (W) —L Ty (W),

Since f is an isometry of W, the induced map f of SO(W) leaves the
connection form invariant [3, p. 226, Theorem 1.3]. This means that, for
each « € SO(W), f maps the horizontal subspace of T,,(SO(W)) to the
horizontal subspace of Tf(u)(SO(W)). However, the metric on SO(W) is
defined so that the horizontal subspaces are isometric to the base space.
Since f was an isometry of the base space, finduces an isometry on the
horizontal spaces.

The map f commutes with the right action of $SOqg(p, g} on SO(W).
That is, fluca) = fuo(uoa) = (fuou)oa = f(u)oa for u € SO(W)
and a € SOgy(p,q). Let o : o(p, g} — X(SO(W)) be the fundamental vec-
tor field defined by o(A), = %h:g(u - exptA). Then (f.(o(A)) =
%|t=0f* o (u-exptd) = %h:()(f* ou) - exptd = O’(A)};'(u) for each

A € o(p,q). This shows that (f). preserves the metric on the vertical
subspaces as well. Consequently, f is an isometry of SO(W). Clearly
f v+ f is a group homomorphism. |

2.8. Fix a point v ¢ SO(W). Let $(u) C G be the holonomy group
of the metric connection with reference point u. See [3, p.72]. Let
Cei(®(u)) be the centralizer of ®{u) in G and let Z(G), the center of G.

LEMMA 2.9. Let g € K. Then the restriction of g to each holonomy
bundle P(u) is a right translation by an element of SOq(p, g).

Proof. Define a map A : SO(W) — SOq{p, q) by
g{w) = weo Alw).

We claim that A is constant on each P(u). Let v be a horizontal curve
in SO(W). Then by Leibniz rule,

9«(¥'(t0)) = Z(v(t) o A(A{E))lso
= S (v(to) o AMv()Dlte + Yatyieo s (¥ (t0))-
Notice that the first summand is vertical and the second is horizontal.
Since g is an isometry, g, maps the horizontal vector '(¢y) to a horizontal
vector. Thus

< (10} o AV(E))lep = 0 for all 1.
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This shows that ) is constant along . Since any two points in P(u)
can be connected via a horizontal path, the conclusion of the lemma
follows. il

The right action of G = SOg(p, ) on SO(W), »(G) belongs to X by
Lemma 2.8, and is transitive on the fiber. Therefore, to understand the
isometry group of SO(W), it is enough to understand the stabilizer of
the action of K.

PRrRoPOSITION 2.10. For u € SO(W), let K,, be the stabilizer of the
K-action on SO(W). Then

1. K, fixes the whole sub-bundle P(u).
2. K, is naturally isomorphic to Cg(®(w))/Z(G) C Inn(G), where
Ce(®(w)) is the centralizer of ®(u) in G.

Proof. Statement (1) follows directly from the preceding Lemma.

(2) We identify the fiber 7=!(w(u)) with G via v «— e. Since el-
ements of Isomg(SO(W)) are weakly G-equivariant, 7(G) is normal in
Isomg(SO(W)), and hence in K.

Let Mg (SO(W), G) denote the group of all G-equivariant maps from
SO(W) to G. That is, X : SO(W} — G is an element of Mg (SO(W), G)
if and only if

Mvoa)=a"loA(v)oca

for all @ € G. Such a map A induces a map A : SO(W) — SO(W) by
A(v) = vo Mv).
At a general point,
Mvoa) = (voa)oA(voa) = (voa)o{a *A(v)oa) = voA(v)oa = A(v)oa,
showing that X is G-equivariant. It is well known [5] that
Mg(SO(W),G) - 1(G) = (G} X z16) Ma(SO(W), G)

is the full group of weakly G-equivariant maps of SO(W) inducing the
identity on W. Thus,

K © Mg(SO(W),G) - 7(G).

Let g € Ky. Then g is of the form g = Ao r(c7!). Now g(u) = u
vields

uolu)oc t=u
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so that A(u) = ¢. Then, for any k € G,
gu-k)=Ror(c™WMN(u-k) = Mu-ke™d) = Au) - ke = u-cke™L

Thus g gives rise to a unique element of Inn(G), defining an injective
homomorphism K,, — Inn(G}.

By (1), g fixes P(u), hence it also fixes u - ®(u). Therefore, g is
an inner automorphism of G leaving the subgroup ®(u) fixed. Thus

Ku C Co(®(u))/Z(G).

Conversely, let ¢ € Cg(®(u)). Choose any “cross section” to the
holonomy bundle P(u) — W; that is, a map s : W — P(u) which is
not necessarily continuous, satisfying » o ¢ = id. Then every point of
SO(W) is of the form s(z) - k for some x € W and k& € G Now define a
map & : SO(W) — SO(W) by

&(s(z) - k) = s(x) - cke™ .

This is well defined because, if ¢ : W — SO(W) is another cross section,
then s and ¢ are related by elements of P(u). More precisely, let s(z)-k =
t(z) - &'. Then t(z) = s(z) - h for some h € ®(u}, and hence k' = h k.
Therefore,

t(z) - ck'e™ = s(z) - heh ke = s(z) - cke™?,

since ¢ commutes with ®(u). We could have used a local smooth section
for 5. This implies that é is smooth. We claim that ¢ is in fact an
isometry. Let s(x) - k € SO(W) be an arbitrary point. On a horizontal
neighborhood (i.e., k fixed, and z varying),

&s(z) - k) = s(x) - cke™t = (s(x) - k) - (k" cke™)

so that ¢ = rp-14.-1. Thus, for a horizontal vectors X, &.(X) =
Pr-leke—1. (X ). On the vertical vectors, recall that G has a bi-invariant
metric and so the conjugation by c is already an isometry. Consequently,
¢ is an isometry of SO(W) inducing the identity on W. Thus we have
shown that the homomorphism X, — Cg(®(u)}/Z(G) is an isomor-
phism. O

THEOREM 2.11. There is a left action of Cg(®(u)) as left trans-
lations on each fiber, and Isom&T(SO(W)) = (E(CG(@(U))) X 2(¢)

r(G)) x Isom™t(W).
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Proof. By the previous lemma, we have
Isom} " (SO(W)) = Kxlsom™ (W)
= (r(G)xky ) xIsom ™ (W)
= (r(G)»(Ce(®(w))/ Z(G)) nTsom™ (W)
= (UCa(@W)) x 2 7(G)) n Tsom™**(W).

So, it only remains to understand how the inner automorphism group
Co(®(u))/Z(G) gives rise to the left multiplication action £(Ce(®(u))).
For any ¢ € Ci(®(u)), define £, : SO(W) — SO(W) by

£o(s(z) - kY = s(z) - ck

so that £, = éor, 1. (The map é was defined in the proof of Lemma
2.10). This finishes the proof of theorem. O

COROLLARY 2.12. For the two extreme cases, we have the following:

1. If ®(u) = SOg(p, q), then Isomj;t (SO(W)) = 7(G) x Isom™(W).
2. If ®{u) is trivial, then

Isomgt (SO(W)) = (4(G) x z(g) 7(G)) xIsom™*H(W).

ExXAMPLE 2.13. If W = RP4 with the indefinite metric of type (p, g),
then the bundle SO(W) has trivial holonomy so that Cg(®(u)) = G.
Thus Isom}t*(SO(W)) = (G xzq G) »{RPI%0T*(p,q)} since
Isom*tH (W) = RPI%O"(p,q).

A pseudo-Riemannian manifold is homogeneous if Isom{W) acts on
W transitively.

THEOREM 2.14. If W is a pseudo-Riemannian homogeneous mani-
fold, then SO(W) contains a sub-bundle which is isometric to the Lie
group Isom* ™ (W) with a left invariant metric.

Proof. Fix u € SO(W), and let x = w(u) € W, where = : SO(W) —
W is the projection. Let H = Isom™* (W)j, the stabilizer at z.
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We have two bundles over W:
H 500(p, )

| |

Isom™ (W) —— SO(W)
l l
w w

Both bundles are principal (with right actions). Define ¢ : H — SOg(p, q)
by ¢(h) =u"toh, ou.

—

Rete X, T (W)

o0 | n|

RPtHg ST T (W)

Clearly ¢ is 1-1. Define ¢ : Isom*T (W) — SO(W) by ¥(f) = f. o
u. Then (Isom** (W), H) — (SO(W),80¢(p, q)) is weakly equivariant.
That is, the diagram

Isom**(W)x H — Isom™ (W) (f,h) —— foh

) o |
SO(W) % 800(p,q) ——  SO(W)  ($(1),é(h)) —— ¥(f) o ¢(h)

is commutative, because ¥(foh) = (foh)sou = (fucu)o(utohiou) =
P{(f) o (u~! o h, o u). Therefore, SO(W) contains Isom™*+ (W) with a
natural left invariant metric. (]

COROLLARY 2.15. Assume W is a pseudo-Riemannian homogeneous
manifold with Tsom™t (W), = SO(p,q). Then Isom** (W) — SO(W)
is a bundle isomorphism.

3. Orthonormal frame bundle of a pseudo-sphere

3.1. Now we specialize to the case when W is a pseudo-sphere. The
quadric
§P9 = {z € RP9H F(z,2) = 1}
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is called a pseudo-Riemannian sphere. It is diffeomorphic to R? x S9
via (z,y) — (=, l—%[) It is connected for ¢ > 0, and has 2 components if
g=10

With this pseudo-Riemannian metric, $”¢ has constant sectional cur-
vature +1, and Isom(SP9) = O{p,q + 1) is the full group of isometries.
The isotropy subgroup at (0,0,--- ,1) is exactly O(p, q}. The connected
component is Isomt (W) = O+ (p, g+ 1) = SOy(p, ¢+1). By Corollary
2.15, they are equal and we have

SO(S79) = Isom™* * (§P9) = SOy (p, ¢ + 1)

as bundles over SP9,

3.2. Geometry of SO(SP4). We would like to understand the metric
on SOy(p, ¢-+1) coming from the identification with SO($74). SO¢(p, ¢+
1) acts on SP? transitively with isotropy subgroup is SOg(p, ¢) so that

SO0¢(p,q) — 80¢(p,q + 1) — 579

is a principal SOgy(p, ¢)-bundle.
Moreover, SP? is a symmetric space with a symmetric structure

(SO0(p, ¢+1),504(p, g}, o), where o is conjugation by [Iigq _01] . Then
SOp(p, q) is the connected component of
(8O0(p, 9 + 1))» = Fix(o,80q(p, ¢ + 1)).

Thus SO¢(p, ¢ + 1)/SO0(p, q) is a symmetric space and the canonical
decomposition of the Lie algebra is

o(p.g+1)=0(p,q) + m

where op, q) is considered as a subalgebra of o{p,q + 1) and m is the
subspace of all matrices of the following form

A B O 0O 0 ¢
o(pJQ)= ¢ DO ) m= O O n :€€Rp1ﬂ€Rq
0 0 0 te _tp @

[These are +1 and —1 eigen spaces of o, respectively]. The restriction of
the Killing-Cartan form of SOg(p, g+1) on g to m defines a SOy(p, g +1)-
invariant (indefinite) Riemannian metric on the symmetric space §72 =
SO0¢(p,q + 1)/50¢(p,q). Furthermore, under the Killing-Cartan form,
the factors g and m are orthogonal.
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Thus our metric on SO(W) and the metric on SOq(p, ¢ + 1) have the
following properties: With the bundle isomorphism,

SOq(p, ) SOo(p, q)

|

SOou(p,g +1) —— SO(W)

|

o~

w
1. the metrics on W are the same
2. the metrics on SOgy{p, q) are the same
3. With the same holonomy bundle, the fiber is orthogonal to the
base.
These are enough to conclude that the two spaces are isometric. See [3,
p. 232, Theorem 3.4].

3.3 (Calculation of holonomy groups}. Clearly o(p,g+1) = o{p,g)+m
as vector spaces. Furthermore, one can show that [m, m] = o(p, ¢). Now
by [3, p.103, Theorem 11.1}, the Lie algebra of the holonomy group
is generated by [m,m]y, ), the o(p,q) component of [m,m]. But since
[m,m] = o(p,q), [m, Mo, = 0(p.q). Therefore, the holonomy group
must be the whole group SOg{p,q). Now by Lemma 2.12, we have

THEOREM 3.4. IsomiH(SO(W)) = r(G) x z(g) Isom™ (W)
= S00(p,q) xz(e) SO0o(p,q + 1}.

Note that in this expression, the group G acts on SO(W) = SOy(p, g+
1) as right multiplication by inverse elements. The group Isom™* (W)
acts on SO(W) as lift of the isometries of W. We have seen this can
be identified as left multiplication of Isom™* (W) = SOq(p,q + 1) on
SO(W) = SOy(p,q + 1). Thus (b,a) € G x Isom™ (W) acts on z €
SOo(p,q) by (b,a) - £ = axb™'. Therefore we write Isom™* (W) first so
that Isom} T (SO(W)) = Isom* (W) x G. Thus, SOg(p, ¢+1) xSOq(p, ¢)
acts on SO(SP?) = SOp(p,q+ 1) by

(SOo(p, g + 1) x () SO0(p, 9)) x SO(5P9) —— S0(5%)
((a,b), ) — v a-z-b!

multiplication in the Lie group SOg(p,q + 1).
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3.5. On the other hand, the group SOy(p, ¢ + 1) is semi-simple, the
Killing-Cartan form defines a bi-invariant pseudo-Riemannian metric on
SOo(p,g +1). Thus

r(G) € r(S0u(p,q + 1)) C Isom(SOo(p, ¢ + 1)).

One can prove that then weakly G-equivariant isometries of SOg(p,g-+1)
is the normalizer of r(G) in £(SO¢(p,q + 1)) - 7{SOu(p, ¢ + 1}), which
becomes

r(G) % z(¢) €(SO0o(p, g + 1)).
Consequently, we get

Isomf™(SOo(p, ¢ + 1)) = SOu(p. 4) X () SOo(p, g + 1).

3.6. Let 9:60 {p, ¢ + 1) be the universal covering group of SOg(p, ¢ +
1); and let SO(p, q) be the covering group of SOq(p, ¢) induced by the
universal covering SOg(p, g+1) — SOq(p, g+ 1); that is, SO(p, ) is the

preimage of SOy(p, g} under this map. The principal fibering is
50(p,q) — SOo(p,g +1) — SOp(p,q + 1).
The isometry group is then
(Isome)o(SO(SP9) = S00(p,¢ + 1) x2 SO(p, 0)

where Z is the diagonal subgroup which is the center of SOg(p, g + 1).
Thus we have a short exact sequence

1 — S0(p, g) — (TIsomg)o(SO(579)) — SOp(p,¢ + 1) — 1.

4. Spaces modelled on SO(S579)

We shall describe the geometries of orthonormal frame bundles of
some low dimensional pseudo-spheres S7¢. The discreteness of a group
? in SOp(p,q + 1) does not necessarily imply that @ acts properly on
S74 and in fact, such proper actions (@, S™9) are quite rare. We give
two examples: S%Y and S'2. The pseudo-sphere S%° admits compact
forms but S1? does not.

THEOREM 4.1. {cf. [9, Theorem 11.1.7]) Suppose a discrete group @
acts on 5P effectively and properly. If p < q, then @} is finite.
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Proof. Let V be the subspace of R?9t! given by 1 = 23 = --+ =
7, =0, so V N SP9 is the equatorial sphere S?. If g € GL(p+ g + 1, R),
then p < g < ¢+ 1 implies

dim(V N g(V)) > 2dim(V) — (p+ g+ 1) > 0.

Thus, for every a € @, a(59) meets S9.

If Q were infinite, then compactness of S9 would give us a point
x € 89, a sequence {a;} C @ of distinct elements, and a sequence
{z;} C 59, such that o;(z;) € 5?7 and {o;(z;)}} — z. Passing to a
subsequence, {z;} — 2’ € $9. As Q has closed orbits, this says a(z') = =
for some & € Q. Then {a la;{z;)} — o !(z) = z', contradicting
discontinuity of ) at z’. Thus @ is finite. C

EXAMPLE 4.2 (SO(5%9)). For W = 5§20 50(5%°) = §0¢(2,1) has a
principal 80g(2, 0)-fibering structure:

80¢(2,0) —— SOp(2,1) —— 8§20

50(2) —— PSL(2,R) —— H?

The pseudo-sphere S*° has an indefinite metric of type (2,0), which is
the negative of the ordinary Poincaré metric. Thus the space SOg(2, 1)
has an indefinite metric of type (2,1), negative of the Lorenz met-
ric, (¢f. [4]). The group of weakly SOg(2,0)-equivariant isometries is
(Isomgo(2,0))0(S0(2, 1)) = SO(2,1) x SO(2).

The universal covering of SOy(2,1) has a fibration

S0y(2,0) —— $0p(2,1) —— 520

R —— PSL(2,R) — » H?
The group of weakly §60(2, 0)-equivariant isometries is

(Isom%(zgo))o(ft}é(z 1)) =R xg SO(2,1).

Note that this is also the group of isometries for the ]?”§I:.(2, R)-geometry.

Let 1 = Z — II — @ — 1 be an central extension of Z by a Fuchsian
group Q. If Q is cocompact, then H2(Q); Z) ~ Z @ Torsion; if Q is finitely
generated and not cocompact, then H?(Q;Z) is a direct sum of finite
cyclic groups corresponding to the conjugacy classes of the maximal
finite subgroups of .
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(Structure Theorem) [4]. Let 1 — Z — I — @Q — 1 be an cen-
tral extension of Z by a Fuchsian group Q. Then II embeds into
(Isomgg ; ,)0(SO(2,1)) if and only if (] € H*(Q,Z) has infinite or-
der.

This embedding yields /T\ P as a Seifert orbifold with a complete Lorentz
metric of constant curvature. The fibers are time-like geodesics. If
Q\S?*Y is non-compact, then each [II] embeds. The same construction

also yields embeddings of IT into Isom(FTS_I’J(ZR)) and [T\ P is a Seifert

orbifold with the 3-dimensional PSL(2, R)-geometry. See [6] and [4] for
the embeddings.

EXAMPLE 4.3 (SO(5%?)). For W = §12, SO(51?) = 80¢(1, 3) has a
principal SOg(1, 2)-fibering structure:
S0p(1,2) —— 80p(1,3) —— 8§12
Since m{S0u(1,3)) = Z and m1(SOp(1,2)} = Z, the bundle is non-
trivial. Then (Isomgp(2))o(SO(S™?)) = SOo(1,2) x 800(1,3) and the
action on SO(S12) =~ 80(1,3) is given by
(a,b)z=b-z-a !
for (a,b) € SOu(1,2) x S0u(1,3) and z € SO(S12).

Suppose there exists a compact space form T\SO(S%?). That is, I7
is a discrete subgroup of SOp(1,2) x SOp(1,3) which acts on SO(512)
properly with IT\SO(S%?) compact. [Such a I exists]. Then I =
I N'SOp(1,2) is never cocompact in SOg(1,2). If it were, the quotient

Q = /T will act on S*2 properly. By Theorem 4.1, Q must be finite.
This implies that I7\SO(5"?) is not compact, a contradiction.

Our model space for the geometry must be simply connected. There-
fore, we take the universal covering space of SO(S1?) as our model space.

Since 7]'1(800(1 3)) = Za, SOp(1,3) is a double covering of SOp(1, 3).
Let SOO(I 2) be the corresponding double covering of SOy(1,2). Then
SO¢(1,3) is a principal §0o(1,2)-bundle,

S0¢(1,2) —— S0g(1,3) —— S2.

Note that SOo(l 2) is “level 2” group in [4], and is isomorphic to SL(2, R},

since wl(SOO(l 2)) = Zy. Therefore, SOy(1,3) is diffeomorphic to §3 x
R3. From (Isomgo,2))o(SO(SH?))} = 80¢(1,2) x SOp(1,3), we have

(Isomg?)(l12))0(sﬁé(31,2)) = 8’60(1:2) XZa %0(113)1
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where Z5 is the diagonal center.
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