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FUNCTIONAL INTEGRATION, KONTSEVICH
INTEGRAL AND FORMAL INTEGRATION

L.ouis H. KAUFFMAN

ABSTRACT. This paper is an exposition of the relationship between
Witten's functional integral and Vassiliev invariants.

1. Introduction

This paper shows how the Kontsevich Integrals, giving Vassiliev in-
variants in knot theory, arise maturally in the perturbative expansion
of Witten’s functional integral. The paper is a sequel to [31]. Since
the writing of [31] I became aware of the work of Labastida and Pérez
[36] on this same subject. Their work comes to an identical conclusion,
interpreting the Kontsevich integrals in terms of the light-cone gauge
and thereby extending the original work of Frohlich and King [14]. The
purpose of this paper is to give an exposition of these relationships and
to introduce diagrammatic techniques that illuminate the connections.
In particular, we use a diagrammatic operator method that is useful
both for Vassiliev invariants and for relations of this subject with the
quantum gravity formalism of Ashtekar, Smolin and Rovelli [3]. An as-
pect that this paper does not treat is the perturbation expansion via
three-space integrals leading to Vassiliev invariants as in [4]. See also
[11]. Nor do we deal with the combinatorial reformulation of Vassiliev
invariants that proceeds from the Kontsevich integrals as in {12].

The paper is divided into three sections. Section 2 discusses Vassiliev
invariants and invariants of rigid vertex graphs. The section three on
the functional integral introduces the basic formalismn and shows how
the functional integral is related directly to Vassiliev invariants. In this
section we also show how our formalism works for the loop transform

Received July 14, 1999, Revised March 17, 2000.

2000 Mathematics Subject Classification: 57M27.

Key words and phrases: knots, links, Vassiliev invariants, functional integral, per-
turbative expansion, Kontsevich integral.



438 Louis H. Kauffman

of Ashtekar,Smolin and Rovelli. Finally section 4 shows how the Kont-
sevich integral arises in the perturbative expansion of Witten’s integral
in the axial gauge. Omne feature of section 4 is a new and simplified
calculation of the necessary correlation functions by using the complex
mumbers and the two-dimensional Laplacian. We show how the Kontse-
vich integrals are the Feynman integrals for this theory. In a final section
we discuss some of the possibilities of justifying functional integration
on formal grounds.
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thank the National Science Foundation for support of this research under
NSF Grant DMS-9205277 and the NSA for partial support under grant
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2. Vassiliev invariants and invariants of rigid vertex graphs

If V(K) is a (Laurent polynomial valued, or more generally - commu-
tative ring valued) invariant of knots, then it can be naturally extended
to an invariant of rigid vertex graphs [26] by defining the invariant of
graphs in terms of the knot invariant via an unfolding” of the vertex.
That is, we can regard the vertex as a "black box” and replace it by
any tangle of our choice. Rigid vertex motions of the graph preserve the
contents of the black box, and hence implicate ambient isctopies of the
link obtained by replacing the black box by its contents. Invariants of
knots and links that are evaluated on these replacements are then auto-
matically rigid vertex invariants of the corresponding graphs. If we set
up a collection of multiple replacements at the vertices with standard
conventions for the insertions of the tangles, then a summation over all
possible replacements can lead to a graph invariant with new coefficients
corresponding to the different replacements. In this way each invariant
of knots and links implicates a large collection of graph invariants. See
[26], [27].

The simplest tangle replacements for a 4-valent vertex are the two
crossings, positive and negative, and the oriented smoothing. Let V(K)
be any invariant of knots and links. Extend V to the category of rigid
vertex embeddings of 4-valent graphs by the formula

V(K.) = aV(K, )+ bV (K ) + eV (Kp)
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where K ; denotes a knot diagram K with a specific choice of positive
crossing, K denotes a diagram identical to the first with the positive
crossing replaced by a negative crossing and K, denotes a diagram iden-
tical to the first with the positive crossing replaced by a graphical node.

This formula means that we define V(G) for an embedded 4-valent
graph G by taking the sum

V(G) = Y ot OGSy (s)
g

with the summation over all knots and links S obtained from G by
replacing a node of G with either a crossing of positive or negative
type, or with a smoothing of the crossing that replaces it by a planar
embedding of non-touching segments (denoted 0}. It is not hard to
see that if V(K) is an ambient isotopy invariant of knots, then, this
extension is an rigid vertex isotopy invariant of graphs. In rigid vertex
isotopy the cyclic order at the vertex is preserved, so that the vertex
behaves like a rigid disk with flexible strings attached to it at specific
points.

There is a rich class of graph invariants that can be studied in this
manner. The Vassiliev Invariants [51],[10},[8] constitute the important
special case of these graph invariants where @ = +1, b = —1 and ¢ = 0.
Thus V(G) is a Vassiliev invariant if

V(K.) = V(K+) - V(K_).

Call this formula the exchange identity for the Vassiliev invariant V. See
Figure 1

V is said to be of finite type k if V(@) = 0 whenever |G| > k where
|G| denotes the number of (4-valent) nodes in the graph G. The notion
of finite type is of extraordinary significance in studying these invariants.
One reason for this is the following basic Lemma.

LEMMA. If a graph G has exactly k nodes, then the value of a Vas-
siliev invariant vy, of type k on G, vg{G), is independent of the embedding
of G.

Proof. The different embeddings of G can be represented by link
diagrams with some of the 4-valent vertices in the diagram corresponding
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Figure 1 — Exchange Identity for Vassiliev Invariants

to the nodes of G. It suffices to show that the value of v () is unchanged
under switching of a crossing. However, the exchange identity for v
shows that this difference is equal to the evaluation of v on a graph with
k + 1 nodes and hence is equal to zero. This completes the proof. O

The upshot of this Lernma is that Vassiliev invariants of type & are
intimately involved with certain abstract evaluations of graphs with &
nodes. In fact, there are restrictions (the four-term relations) on these
evaluations demanded by the topology and it follows from results of
Kontsevich [8] that such abstract evaluations actually determine the
invariants. The knot invariants derived from classical Lie algebras are
all built from Vassiliev invariants of finite type. All this is directly related
to Witten’s functional integral [54].

In the next few figures we illustrate some of these main points. In
Figure 2 we show how one associates a so-called chord diagram to repre-
sent the abstract graph associated with an embedded graph. The chord
diagram is a circle with arcs connecting those points on the circle that
are welded to form the corresponding graph. In Figure 3 we illustrate
how the four-term relation is a consequence of topological invariance.
In Figure 4 we show how the four term relation is a consequence of the
abstract pattern of the commutator identity for a matrix Lie algebra.
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This shows that the four term relation is directly related to a categorical
generalisation of Lie algebras. Figure 5 illustrates how the weights are
assigned to the chord diagrams in the Lie algebra case - by inserting Lie
algebra matrices into the circle and taking a trace of a sum of matrix
products.

2

Figure 2 — Chord Diagrams

3. Vassiliev invariants and Witten’s functional integral

In [54] Edward Witten proposed a formulation of a class of 3-manifold
invariants as generalized Feynman integrals taking the form Z (M) where

Z(M) — /DAE(ik/47r)S(M’A).

Here M denotes a 3-manifold without boundary and A is a gauge field
(also called a gauge potential or gauge connection) defined on M. The
gauge field is a one-form on a trivial G-bundie over M with values in
a representation of the Lie algebra of G. The group G corresponding
to this Lie algebra is said to be the gauge group. In this integral the
“action” S(M, A) is taken to be the integral over M of the trace of the
Chern-Simons three-form A AdA+(2/3)AN AN A. (The product is the
wedge product of differential forms.)
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Figure 3 — The Four Term Relation from Topology
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Figure 4 — The Four Term Relation from Categorical Lie
Algebra

Z{M) integrates over all gauge fields modulo gauge equivalence (See
[5] for a discussion of the definition and meaning of gauge equivalence.)

The formalism and internal logic of Witten's integral supports the
existence of a large class of topological invariants of 3-manifolds and
associated invariants of knots and links in these manifolds.

The invariants associated with this integral have been given rigorous
combinatorial descriptions [45],[50],[33],[39], [52],[29], but questions and
conjectures arising from the integral formulation are still outstanding.
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Figure 5 — Calculating Lie Algebra Weights

(See for example [6], [15],[17], [19],[46], [1].) Specific conjectures about
this integral take the form of just how it implicates invariants of links
and 3-manifolds, and how these invariants behave in certain limits of
the coupling constant k& in the integral. Many conjectures of this sort
can be verified through the combinatorial models. On the other hand,
the really outstanding conjecture about the integral is that it exists! At
the present time there is no measure theory or generalization of measure
theory that supports it. Here is a formal structure of great beauty. It
is also a structure whose consequences can be verified by a remarkable
variety of alternative means.

We now look at of the Witten integral in more detail and see how it
implicates invariants of knots and links corresponding to each classical
Lie algebra. In order to accomplish this task, we need to introduce the
Wilsen loop. The Wilson loop is an exponentiated version of integrating
the gauge field along a loop K in three space that we take to be an
embedding (knot) or a curve with transversal self-intersections. For this
discussion, the Wilson loop will be denoted by the notation Wg(A) =<
K|A > to denote the dependence on the loop K and the field A. It is

usually indicated by the symbolism tr(Pefx4) . Thus
Wi (A) =< K|A >= tr(Pefx 4).
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Here the P denotes path ordered integration - we are integrating and
exponentiating matrix valued functions, and so must keep track of the
order of the operations. The symbol tr denotes the trace of the resulting
matrix.

With the help of the Wilson loop functional on knots and links, Wit-
ten writes down a functional integral for link invariants in a 3-manifold

M:
Z@LKy:/DA&W“WM&wu%%A)

:/Dm%mw<KM>.

Here S(M, A) is the Chern-Simons Lagrangian, as in the previous discus-
sion. We abbreviate S(M, A) as S and write < K|A > for the Wilson
loop. Unless otherwise mentioned, the manifold A will be the three-
dimensional sphere 53

An analysis of the formalism of this functional integral reveals quite
a bit about its role in knot theory. This analysis depends upon key facts
relating the curvature of the gauge field to both the Wilson loop and the
Chern-Simons Lagrangian. The idea for using the curvature in this way
is due to Lee Smolin [47] (See also [42]). To this end, let us recall the
local coordinate structure of the gauge field A(z), where z is a point in
three-space. We can write A(z) = A%(z)T.dz" where the index a ranges
from 1 to m with the Lie algebra basis {T1,7%,T%,...,T;n}. The index &k
goes from 1 to 3. For each choice of ¢ and &, Aj(z) is a smooth function
defined on three-space. In A(z) we sum over the values of repeated
indices. The Lie algebra generators T, are matrices corresponding to a
given representation of the Lie algebra of the gauge group G. We assume
some properties of these matrices as follows:

1. [T,,Ty] = if*cT, where [z,y] = zy — yx, and fa% (the matrix of
structure constants) is totally antisymmetric. There is summation over
repeated indices.

2. tr(1,T) = 845/2 where 6y, is the Kronecker delta (0 = 1ifa =05
and zero otherwise).

We also assume some facts about curvature. (The reader may enjoy
comparing with the exposition in [28]. But note the difference of con-
ventions on the use of i in the Wilson loops and curvature definitions.)
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The first fact is the relation of Wilson loops and curvature for small
loops:

Fact 1. The result of evaluating a Wilson loop about a very small
planar circle around a point z is proportional to the area enclosed by
this circle times the corresponding value of the curvature tensor of the
gauge field evaluated at z. The curvature tensor is written

FP (2)Tpdz"dy’.
It is the local coordinate expression of F' =dA + A A A.

Application of Fact 1. Consider a given Wilson line < K|S >. Ask
how its value will change if it is deformed infinitesimally in the neigh-
borhood of a point x on the line. Approximate the change according to
Fact 1, and regard the point x as the place of curvature evaluation. Let
d < K|A > denote the change in the value of the line. § < K|A > is
given by the formula

d < KI|A >=da"dz’F,*(2)}T, < K|A > .
This is the first order approximation to the change in the Wilson line.

In this formula it is understood that the Lie algebra matrices 7,, are
to be inserted into the Wilson line at the point z, and that we are
summing over repeated indices. This means that each T, < K|A > is a
new Wilson line obtained from the original line < K|A > by leaving the
form of the loop unchanged, but inserting the matrix T, into that loop
at the point x. In Figure 6 we have illustrated this mode of insertion
of Lie algebra into the Wilson loop. Here and in further illustrations in
this section we use Wi (A4} to denote the Wilson loop. Note that in the
diagrammatic version shown in Figure 6 we have let small triangles with
legs indicate dz'. The legs correspond to indices just as in our work in
the last section with Lie algebras and chord diagrams. The curvature
tensor i3 indicated as a circle with three legs corresponding to the indices

of ET.

NotaTiON. In the diagrams in this section we have dropped mention
of the factor of (1/4m) that occurs in the integral. This convention
saves space in the figures. In these figures L denotes the Chern—Simons
Lagrangian.

REMARK. In thinking about the Wilson line < K|A4 >= tr(Pefx 4),
it is helpful to recall Euler’s formula for the exponential:
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Figure 6 — Lie algebra and Curvature Tensor insertion into
the Wilson Loop

e* = limn oofl + z/n)".

The Wilson line is the limit, over partitions of the loop K, of products
of the matrices (1+ A(z)) where x runs over the partition. Thus we can
write symbolically,

< K|A>= J[(+ A=)
e K

= [[ (0 + Ai(2)Tude®).
zcK

It is understood that a product of matrices around a closed loop connotes
the trace of the product. The ordering is forced by the one dimensional
nature of the loop. Imsertion of a given matrix into this product at a
point on the loop is then a well-defined concept. If T is a given matrix
then it is understood that T < K|A > denotes the insertion of T into
some point of the loop. In the case above, it is understood from context
in the formula that the insertion is to be performed at the point x
indicated in the argument of the curvature.

REMARK. The previous remark implies the following formula for the
variation of the Wilson loop with respect to the gauge field:

§ < K|A> /5(A%(z) =dx*T, < K|A > .

Varying the Wilson loop with respect to the gauge field results in the
insertion of an infinitesimal Lie algebra element into the loop. Figure
7 gives a diagrammatic form for this formula. In that Figure we use a
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capital D with up and down legs to denote the derivative §/6(Aj (x}). In-
sertions in the Wilson line are indicated directly by matrix boxes placed
in a representative bit of line.

|
v

Figure 7 — Differentiating the Wilson Line

Proof.
6 < K|A > /8(A;(x))
=6 [T + AL()Tudy®) /6( AL (2))
yeK
= [ 0+ A Tudy®)[Tudz*] J] @+ Aby)Tudy®)
y<xEK y>reK

=dz*T, < K|A > .

Fact 2. The variation of the Chern-Simons Lagrangian S with respect
to the gauge potential at a given point in three-space is related to the
values of the curvature tensor at that point by the following formula:

Fro(x) = €505/ 6(Af ().

Here ¢, is the epsilon symbol for three indices, i.e. it is +1 for positive
permutations of 123 and —1 for negative permutations of 123 and zero if
any two indices are repeated. A diagrammatic for this formula is shown
in Figure 8.

With these facts at hand we are prepared to determine how the Wit-
ten integral behaves under a small deformation of the loop K.
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k7N

Figure 8 — Variational Formula for Curvature

THEOREM. 1. Let Z(K) = Z(5° K) and let §Z(K) denote the
change of Z(K) under an infinitesimal change in the loop K. Then

SZ(K) = (4mi/k) f dAeR S ol T, T, < KA >

where Vol = €, dx"dx®dxt.

The swn is taken over repeated indices, and the insertion is taken
of the matrices ToT, at the chosen point x on the loop K that is re-
garded as the "center” of the deformation. The volume element Vol =
ersttdrrdisda, is taken with regard to the infinitesimal directions of the
loop deformation from this point on the original loop.

2. The same formula applies, with a different interpretation, to the case
where x is a double point of transversal self intersection of a loop K, and
the deformation consists in shifting one of the crossing segments perpen-
dicularly to the plane of intersection so that the self-intersection point
disappears. In this case, one T, is inserted into each of the transversal
crossing segments so that 1,1, < K|A > denotes a Wilson loop with a
self intersection at x and insertions of T, at z+¢; and x 4¢3 where €] and
€2 denote small displacements along the two arcs of K that intersect at
z. In this case, the volume form is nonzero, with two directions coming
from the plane of movement of one arc, and the perpendicular direction
is the direction of the other arc.
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Proof.
6Z(K) = f DAEHR/ISS < KA >
- / D AR ™S g gy B2 (2)T, < K|A >
= / D Ae/4S gy dySe, 4 (8S/6( A (z))T, < K|A >
= (_4;@-/@ / DA(8e™/AmS 15 AY(a)))ersedz"dy* T, < K|A >

= (4mi/k) f DAeCKAS ¢ da” dy® (6T, < K|A > [6(A%(z)))
(integration by parts and the boundary terms vanish)

= (4mi/k) / DA/ ol T, T, < K|A> .

This completes the formalism of the proof. In the case of part 2., a
change of interpretation occurs at the point in the argument when the
Wilson line is differentiated. Differentiating a self intersecting Wilson
line at a point of self intersection is equivalent to differentiating the
corresponding product of matrices with respect to a variable that occurs
at two points in the product (corresponding to the two places where the
loop passes through the point). One of these derivatives gives rise to a
term with volume form equal to zero, the other term is the one that is
described in part 2. This completes the proof of the Theorem. O

The formalism of this proof is illustrated in Figure 9.

In the case of switching a crossing the key point is to write the crossing
switch as a composition of first moving a segment to obtain a transversal
intersection of the diagram with itself, and then to continue the motion
to complete the switch. One then analyses separately the case where
& is a double point of transversal self intersection of a loop K, and the
deformation consists in shifting one of the crossing segments perpen-
dicularly to the plane of intersection so that the self-intersection point
disappears. In this case, one 7, is inserted into each of the transversal
crossing segments so that 7°7° < K|A > denotes a Wilson loop with a
self intersection at x and insertions of 7% at = -+ €1 and = + €2 as in part
2. of the Theorem above. The first insertion is in the moving line, due to
curvature. The second insertion is the consequence of differentiating the
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Figure 9 — Varying the Functional Integral by Varying the
Line

self-touching Wilson line. Since this line can be regarded as a product,
the differentiation occurs twice at the point of intersection, and it is the
second direction that produces the non-vanishing volume form.
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Up to the choice of our conventions for constants, the switching for-
mula is, as shown below (See Figure 10).

Z(K, ) — Z(K_) = (4mi/k) / DA*AMST T, <« K, |A >

= (4mi/k)Z(T T"K.),

where K,. denotes the result of replacing the crossing by a self-touching
crossing. We distinguish this from adding a graphical node at this cross-
ing by using the double star notation.

N\

- (c/K)Z + 0(1/k%)

KX

Figure 10 —— The Difference Formula

A key point is to notice that the Lie algebra insertion for this dif-
ference is exactly what is done (in chord diagrams) to make the weight
systems for Vassiliev invariants (without the framing compensation).
Here we take formally the perturbative expansion of the Witten inte-
gral to obtain Vassiliev invariants as coefficients of the powers of (1/k").
Thus the formalism of the Witten functional integral takes one directly
to these weight systems in the case of the classical Lie algebras. In this
way the functional integral is central to the structure of the Vassiliev
invariants. ’
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3.1. The Loop Transform

Suppose that ¢(A) is a (complex valued) function defined on gauge
fields. Then we define formally the loop transform ¥ (K}, a function on
embedded loops in three dimensional space, by the formula

B(K) = [ DAY(A)Wic(4).

If A is a differential operator defined on (A4), then we can use this
integral transform to shift the effect of A to an operator on loops via
integration by parts:

Kj(K) = [ DAAHAWx(4)

=- f DAG(A) AWK (A).

When A is applied to the Wilson loop the result can be an understand-
able geometric or topological operation. In Figures 11, 12 and 13 we
illustrate this situation with diagrammatically defined operators G and
H.

We see from Figure 12 that

CY(K) = d(K)

where this variation refers to the effect of varying K by a small loop. As
we saw in this section, this means that if @(K } is a topological invariant
of knots and links, then @(K } = 0 for all embedded loops K. This
condition is a transform analogue of the equation Gy¥(A) = 0. This
equation is the differential analogue of an invariant of knots and links.
It may happen that (SJ(K } is not strictly zero, as in the case of our
framed knot invariants. For example with

’I,D(A) _ e('ik/47r) Jtr{AAdA+H(2/3)ANANA)

we conclude that @(K ) is zero for flat deformations (in the sense of
this section) of the loop K, but can be non-zero in the presence of a twist
or curl. In this sense the loop transform provides a subtle variation on
the strict condition Gy(A) = 0.
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A¥(K) =ﬁA A¥(A) Wi

- [DA¥(A) AWK

#(K) J)AT(A)WK
(

o--OD . 1 -@ DD

Figure 11-— The Loop Transform and Operators G and H

In (3| and earlier publications by these authors, the loop transform
is used to study a reformulation and quantization of Einstein gravity.
The differential geometric gravity theory is reformulated in terms of a
background gauge connection and in the quantization, the Hilbert space
consists in functions 1(A) that are required to satisfy the constraints

G =0

and
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Ge(~) = |DAGYW,, = _ |DA ¥ GW.,

- [DA¥ - |DA ¥ SW..

Figure 12 — The Diffeomorphism Constraint

Hy=0

where H is the operator shown in Figure 13. Thus we see that G(K)
can be partially zero in the sense of producing a framed knot invariant,
and (from Figure 13 and the antisymmetry of the epsilon) that H(K) is
zero for non-self intersecting loops. This means that the loop transforms
of G and H can be used to investigate a subtle variation of the original
scheme for the quantization of gravity. This program is being actively
pursued by a number of researchers. The Vassiliev invariants arising
from a topologically invariant loop transform should be of significance
to this theory. This theme will be explored in a subsequent paper.

4. Wilson lines, axial gauge and the Kontsevich integrals

In this section we follow the gauge fixing method used by Frohlich
and King [14]. Their paper was written before the advent of Vassiliev
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Figure 13 — The Hamiltonian Constraint

invariants, but contains, as we shall see, nearly the whole story about
the Kontsevich integral. A similar approach to ours can be found in
(36]. In our case we have simplified the determination of the inverse
operator for this formalism and we have given a few more details about
the calculation of the correlation functions than is customary in physics
literature. I hope that this approach makes this subject more accessible
to mathematicians. A heuristic argument of this kind contains a great
deal of valuable mathematics. It is clear that these matters will even-
tually be given a fully rigorous treatment. In fact, in the present case
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there is a rigorous treatment, due to Albevario and Sen-Gupta [2] of the
functional integral after the light-cone gauge has been imposed.

Let (2°,2!,2%) denote a point in three dimensional space. Change to
light-cone coordinates
zt =zl +2?
and
z” =z' — 2%
Let t denote z°.
Then the gauge connection can be written in the form

A(z) = A (z)dz™ + A (z)dz™ + Ao(x)dL.

Let C'S(A) denote the Chern-Simons integral {over the three dimensional
sphere)
CS(A) = (1/4) / tr(AAdA+ (2/3)AN AN A).

We define azial gauge to be the condition that A_ = 0. We shall now
work with the functional integral of the previous section under the axial
gauge restriction. In axial gauge we have that AA AA A =0 and so

CS(A) = (1/47) ] 1r(A A dA).

Letting 83 denote partial differentiation with respect to %, we get the
following formula in axial gauge

ANdA = (A 0. Ay — Agd A )dz™ Adz™ Adt.

Thus, after integration by parts, we obtain the following formula for the
Chern-Simons integral:

CS(A) = (1/2r) / tr(AL0_Ap)dz ™ Adz Adt.

Letting &; denote the partial derivative with respect to x;, we have that

(9+87 = 8% - 6%
If we replace x? with 122 where 42 = —1, then 8,8_ is replaced by
0t + 92 = V2.

We now make this replacement so that the analysis can be expressed
over thecomplex numbers.
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Letting
z =z iz,
it is well known that
Viin(z) = 218(z)
where d(z) denotes the Dirac delta function and In(z) is the natural
logarithm of z. Thus we can write

(8,0_) "t = (1/2m)in(2).
Note that 8, = 8, = /82 after the replacement of x% by iz?. As a
result we have that

(0_)! =8.(8,0_)"1 = 8, (1/2m)in(z) = 1/2m2.

Now that we know the inverse of the operator &_ we are in a position
to treat the Chern-Simons integral as a quadratic form in the pattern

(—-1/2) < A,LA >= —iCS(A)

where the operator
L=40_.

Since we know L™, we can express the functional integral as a Gaussian
integral:

We replace

Z(K) = / DAe*OS A tr(Pefx A)

Z(K) = / DAECS A g pef ANVE

by sending A to (1/ Vk)A. We then replace this version by

Z(K) = f DA VI<ALA> . pofi AIVEY

In this last formulation we can use our knowledge of L1 to determine
the the correlation functions and express Z(K') perturbatively in powers

of (1/vVk).
PROPOSITION. Letting

< $(A /DAe S1/D<ALA> g 4 /DAe ~1/2)<A,LA>
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for any functional ¢{A), we find that
< A%z, 1) 4% (w,s) >=0,
< Af(z, ) Af(w, s) >=10,
< A% (2, 1) Af(w, s) >= 68t — s}/(z — w)
where & is a constant,

Proof Sketch. Let’s recall how these correlation functions are obtained.
The basic formalisin for the Gaussian integration is in the pattern

< A(z)A(w) >= [DA6(~1/2)<A,LA>A(Z)A(w)//DAe(g1/2)<A,LA>

= ((8/8J(2))(8/8J (w))| y—g )M/ D<ILI>
Letting G * J(2) = [ dwG(z — w)J(w), we have that when

LG(z) = §(z)
(0(z) is a Dirac delta function of z.) then
LGx* J(z) = /deG(z —w)J(w) = fdwé(z —w)J(w) = J(z)

Thus G * J(z) can be identified with L~1J(z).

In our case
G(z)=1/2zz
and
LUz =G+ J(z) = /de('w}/(z ~ w}.
Thus

<J(2), L7NI(2) > =< J(2),G = J(z) >
— (1/2m) / tr(J(2)( / dwd (w)/(z — w))dz
= (1/27r)//dzdwtr(](z)J(w))/(z — ).

The results on the correlation functions then follow directly from differ-
-entiating this expression. Note that the Kronecker delta on Lie algebra
indices is a result of the corresponding Kronecker delta in the trace
formula tr(T,7;) = 84p/2 for products of Lie algebra generators. The
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Kronecker delta for the z = ¢,s coordinates is a consequence of the
evaluation at J equal to zero. a

We are now prepared to give an explicit form to the perturbative
expansion for

< K >= Z(K)/[DA6(1/2)<A,LA>

=/DAe(_1/2)<A,LA>tT(P6§KA/V”E)//DAe(—l/2)<A,LA>

= /DAG(_1/2)<A’LA>tr( H (1+ (A/\/E)))/ / DAel—1/2)<A,LA>

xe K
= /2 z1)..Alz,) > .
S/ j{{ <A A >

The latter summation can be rewritten (Wick expansion) into a sum
over products of pair correlations, and we have already worked out the
values of these. In the formula above we have written K7 < ... < K, to
denote the integration over variables xj, ...z, on K so that 1 < ... < z,,
in the ordering induced on the loop K by choosing a basepoint on the
loop. After the Wick expansion, we get

<K >=Y(1/k") j( S ] < Aw)AED >

- Ki<...<Kp P={Ii<m“i:1,,..m} i

Now we know that

< Alz)A(xl) >=< Al(z)Ab(z]) > T, TdzFdxt.
Rewriting this in the complexified axial gauge coordinates, the only
contribution is

< A% (2, t) A5 (s,w) >= k68t — s)/(2 — w).
Thus

< A(z)Az)) >
=< A% (z;)Af(x}) > TyTodz ™ Adt+ < AG(z) A (7)) > ToT,dz™ A dt
= {dz — d}/(z ~ Z)[i/?]
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where {i/i'] denotes the insertion of the Lie algebra elements 7,7, into
the Wilson loop.

As a result, for each partition of the loop and choice of pairings P =
{z; < z|¢ = 1,..m} we get an evaluation Dp of the trace of these
insertions into the loop. This is the value of the corresponding chord
diagram in the weight systems for Vassiliev invariants. These chord
diagram evaluations then figure in our formula as shown below:

m

<K>= 30/ > Dp f Az — a2/ ((z — 2)
m P K

1<...<Kn i=1

This is a Wilson loop ordering version of the Kontsevich integral. To
see the usual form of the integral appear, we change from the time vari-
able (parametrization) associated with the loop itself to time variables
associated with a specific global direction of time in three dimensional
space that is perpendicular to the complex plane defined by the axial
gauge coordinates. It is easy to see that this results in one change of
sign for each segment of the knot diagram supporting a pair correlation
where the segment is oriented (Wilson loop parameter} downward with
respect to the global time direction. This results in the rewrite of our
formula to

m

< K >=)Y (1/k™) Z(—D'P“DP/ N(dz — dz)/((z — z})
— = 1<t 5y

where |P | | denotes the number of points (z;,t;) or (z;,t;) in the pair-
ings where the knot diagram is oriented downward with respect to global
time. The integration around the Wilson loop has been replaced by
integration in the vertical time direction and is so indicated by the re-
placement of {K] < ... < K,} with {t; < ... <t,}

The coefficients of 1/k™ in this expansion are exactly the Kontsevich
integrals for the weight systems Dp. See Figure 14.

It was Kontsevich’s insight to see (by different means) that these in-
tegrals could be used to construct Vassiliev invariants from arbitrary
weight systems satisfying the four-term relations. Here we have seen
how these integrals arise naturally in the axdal gauge fixing of the Wit-
ten functional integral.
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Figure 14 — Applying The Kontsevich Integral

REMARK. The careful reader will note that we have not made a
discussion of the role of the maxima and minima of the space curve of
the knot with respect to the height direction (). In fact one has to
take these maxima and minima very carefully into account and to di-
vide by the corresponding evaluated loop pattern (with these maxima
and minima) to make the Kontsevich integral well-defined and actually
invariant under ambient isotopy (with appropriate framing correction
as well). The corresponding difficulty appears here in the fact that be-
cause of the gauge choice the Wilson lines are actually only defined in
the complement of the maxima and minima and one needs to analyse
a limiting procedure to take care of the inclusion of these points in the
Wilson line. This points to one of the places where this correspondence
with the Kontsevich integrals as Feynman integrals for Witten’s func-
tional integral could stand closer mathematical scrutiny. One purpose of
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this paper has been to outline the correspondences that exist and to put
enough light on the situation to allow a full storyto eventually appear.

5. Formal integration

In light of the fact that many beautiful and rigorous results come
forth from the formal manipulation of functional integrals, it is of in-
terest to attempt to see whether one can create a formal (essentially
combinatorial) category in which these manipulations can exist. This
section is devoted to some very elementary remarks along this line.

Suppose that we start with an extended real line in the sense of Robin-
son’s non-standard analysis [44], [18]. (For a delightful introduction to
a similar construction of an extended real line see also Conway’s work
on Surreal Numbers [13].) In this line there are infinitesimals § each
less than any standard real and the extended line is still a field. Can
we make formal integrals that make sense of Leibniz’s f; flz)dx as a
"sum” over infinitely many small quantities?

The yoga for the usual Robinson approach is to define a Riemann sum
S(Az) = 1, f(z:)Ax where {zg,...,2,} is a partition of the interval
[a,b] and nAz = b — a. The Riemann sum is regarded as a function
of Az, and then by the Robinson logic of transfering statements about
reals to statements about hyperreals, one can let Az be infinitesimal to
define the integral.

Here, I want to note that there is a very formal counterpart to this
process that lets one define an indefinite ” micro-integral” by a straight-
forward formula where § is an infinitesimal;

F(z) = f(z)d+ flz = 6)0 + f{z — 26) + ...

I claim that F(z) is a formal representative for [* f(¢)dt. In partic-
ular, lets compute the derivative of F:

Flz+6) = fle+8)d+ f(z)d+ flz —8)6 + f(z —20)6 + ...
Thus
(F(z+6) — F(z))/6 = f(z + 6).
Every finite hyperreal is a unique sum of a real and an infinitesimal.

The derivative of a function is defined to the real part of the difference
quotient using 4. It follows that
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F'(z) = f(z).

In this sense, we can directly write down a formal antiderivative for
a real-valued function f(x).

How far are we on the road toward writing down a formal version
of a functional integral in gauge field theory? Is there a combinatorial
formula for

Z(M,K) = f DA #/AMSMA) g pefic 4)

utilizing an ochestration of countable sums of infinitesimals from the
hyperreals? If we do make such a construction it may, like our toy
example F(z), be itself infinitesimal, or even infinite. The problem is
to make it well-defined in the hyperreals and so that the typical results
about integrating Gaussians are logical consequences of its construction.
That is the question!

Since I do not have an answer to this question at this writing, let me
add a few more ideas. There is another approach to the infinitesimal
calculus due to Lawvere and Bell [7] that uses square zero infinitesimals.
These are infinitesimals € such that € = 0. Of course the extension of
the reals to these new hyperreals is no longer a field. Furthermore these
structures are usually wrapped in a cloak of intuitionistic mathematics
and category theory (topos theory — see [7] and [40]). The intuitionism
comes from the desire that € be indistinguishable from zero and yet not
zero. Such subtletly is possible in a world where the double negative is
distinct from an affirmation.

The square zero infinitesimals are charming. In this system, the for-
mula

flz+e) = f(z) + f(x)e

defines the derivative of f(z), and all the familiar properties of deriva-
tives follow easily.

Now square zero infinitesimals remind the differential geometer imme-
diately of Grassmann algebra and exterior differential forms. Actually
there are two significant choices that one can make at this fundamental
level. One can choose to assume that distinct square zero infinitesimals
cornmute with one another, and do not necessarily annihilate each other
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when multiplied. Or one can assume that they do not necessarily com-
mute, but that the squares of any finite sum of them is itself of square
zero. Let us consider these two choices one at a time,

In the case of commuting square zero infinitesimals a and 3, we have
(a+B8)" = o + 208 + §°
= 2aj
while
(a+8)*=0.

In general, the commutative situation forces higher and higher orders
of nilpotencey for sums of independent infinitesimals. An infinite sum
of square zero infinitesimals can stand for a standard Robinson infinites-
imal. This indicates that the Robinson theory should be seen as as the

limit of square zero theories. This is the analog of thinking of a Taylor
series in terms of its truncations.

In the case of all sums having square zero and non-commutation, we
recover an infinitesimal version of Grassmann algebra:

0=(a+8)?=0o’+af + fu+

= aff + Ba.
Thus
0 =af + fa.

I take these elementary observations as hints that the correct version
of calculus for our purposes will contain infinitesimals that partake of
all these options, and that we should press ahead and create the theory
that contains them.
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