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COHERENT STATE REPRESENTATION
AND UNITARITY CONDITION
IN WHITE NOISE CALCULUS

NoBUAKI OBATA

ABSTRACT. White noise distribution theory over the complex Gauss-
ian space is established on the basis of the recently developed white
noise operator theory. Unitarity condition for a white noise op-
erator is discussed by means of the operator symbol and complex
Gaussian integration. Concerning the overcompleteness of the ex-
ponential vectors, a coherent state representation of a white noise
function is uniquely specified from the diagonal coherent state rep-
resentation of the associated multiplication operator.

Introduction

During the recent development of white noise calculus the complex
white noise has played some interesting roles in a study of the infinite di-
mensional unitary group [9], [10], holomorphic white noise functions [11],
an infinite dimensional analogue of Bargmann space [14], [23], and so
forth. In the previous papers [17], [19] another point of interest is inves-
tigated concerning the coherent states {(exponential vectors); namely, we
established an infinite dimensional analogue of diagonal coherent state
representation which is well known in quantum mechanics (e.g., [8], [12],
[13], {22]) and, as natural consequences we come to the resolution of the
identity, the inversion formulas for the S-transform and for the operator
symbol.

The present paper contains two, topics which supplement the study
directed by the previous papers [17], [19]. First we shall discuss unitarity
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condition for white noise operators in terms of operator symbols. Appar-
ently, our result possesses potential applications in the study of quantum
stochastic evolution equations. We shall next revisit the overcomplete-
ness of exponential vectors. For this famous property the coherent state
representation of a white noise function is not unique, while the diag-
onal coherent state representation of a white noise operator is unigue
[19]. Being based on the quantum-—classical correspondence in probabil-
ity theory, we shall obtain a formula for the coherent state representation
of a white noise function regarded as a multiplication operator. Further
relevant investigation is now in progress, e.g., [20].
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1. Complex Gaussian space

We start with the real Gelfand triple:
(1) E=8R)cC H=TIL*R,dt) C E*=8'(R),

where S(R) is the space of rapidly decreasing functions and §'(R)} the
dual space, i.e., the space of tempered distributions. We denote by (-, -)
the canonical bilinear form on E* x F and by |- |o the norm of H. For
notational convenience, the C-bilinear form on Eg& x E¢ is denoted by
the same symbol so that |£|2 = (€, £) holds for £ € He. (In general, the
complexification of a real vector space X is denoted by X¢.}

Let ' be the Gaussian measure on E* with variance 1/2, namely,
a probability measure on E* determined uniguely by the characteristic
function:

e 1El6/4 :/ 8/ (d), £eE.

In view of the topological isomorphism Ef = E* x E*, we define a
probability measure v = p' x ¢’ on EZ by

v(de) = p/(de)p/(dy),  z=w+iye€ EG.
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Following Hida {10, Chapter 6] the probability space (Eg,v) is called
the compler Gaussian space. We record here two formulas:

(2) / el® 8 (dz) = & 874, ¢ € Ec,

(3) ] BT L(dz) = &M ¢,ne€ Eg,
Eg

where Z = z — iy for z = 2 + iy € E* +1E*. Remind that (., -) is the
canonical C-bilinear form on E¢ X Ec.

2. CKS-space

We review the standard construction of a CKS-space [6]. For a Hilbert
space H and a sequence a = {a(n)}22, of positive numbers we put

oo
To(H) = {cb = (fn)o20s fo € H®™, [¢II° =Y _nla(n)|fal® < oo} .
n=0
In an obvious manner T'o(H) becomes a Hilbert space and is called a
weighted Fock space. The Boson Fock space is by definition the special
case of a(n) = 1 and is denoted by I'(H). In the sequel we assume that
the weight sequence o = {a(n)}%° , satisfies the following conditions:

(A1) 1 =a(0) < e(l) <a(2) <

o0
(A2) the generating function G,(t) = Z g%t” has an infinite radius
n=0 ’

of convergence;

(A3) the function Galt) = it" n inf Z2) L pag o positive
ORI P

radius of convergence;

(A4) there exists a constant C > 0 such that a(n}a(m) < CPt"a{n +
m) for all n,m;

(A5) there exists a constant Cy > 0 such that a(n-+m) < CF ™ a(n)a(m)
for all n, m.

These conditions are sufficient for the characterization of S-transform
[6], for the characterization of operator symbol and for another vital
properties of white noise operators [4], [18]. However, they are not yet
down to the mimimum; the formulation proposed recently in [1], {7]
singles out the essential requirements for {a(n)} in a different language
but is easily transplanted to cur argument.
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For p > 0 let E4, be the Hilbert space obtained by completing F =
S(R) with respect to the norm [¢]+, = [A*FE[ 2R, where A =1+12 —
d?/dt?. We then have

E = projlim E,, = indlim E_,.

p—0oo p—o0
Given a sequence o = {a(n)}S° , satisfying the above conditions, we put

(4) [To(E) = projlimT'(E,).

p—oo

Then I',(E) becomes a nuclear space, the topology of which is given by
the family of norms:

”¢|!p,+ = Z'n'a |fn|p: ¢={fa)y »>0.

By a standard argument we see that

(5) Fo(E) =indlimI, 1 (E_,),
poo

where T'o (E)* carries the strong dual topology and £ stands for a topo-
logical linear isomorphism. We often write W for I'y(E) for simplicity.
Then, in view of (4) and (5) we come to a Gelfand triple:

(6) W CT(He) C W,

which is called the Cochran—Kuo—-Sengupta space or the CKS-space for
short [6]. The canonical C-bilinear form on W* x W is denoted by (-, -)}.
Then

(1) (@, ) =D nlFy, fo),  ®=(E)eW", ¢=(fu)eW,

n=0
and it holds that
[P, o) < 12 —p, 1B lp,+»

where
(o0}

”(I)”-p, Z ) | nl_p, P = (Fn) e W*,
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3. CKS-space over complex Gaussian space

Let I'(H¢) be the Boson Fock space over Hg. Then, through the
celebrated Wiener-It6—Segal isomorphism we have

(8) L*(E*,u') = T(Hc),

where the unitary isomorphism is uniquely determined by the correspon-
dence:

(9)

2 Kn
el() = V2EO-60/2 L g = (1’575 3

T

")7 fEEC-

The above ¢ is called an ezponential vector or a coherent state (without
normalization). In fact,

«qbﬁa d’ﬂ» - e<£’n)a 6777 € EC!

where the left hand side stands for the canonical C-bilinear form on
['(Hce).

Since the exponential vectors {¢¢ ; £ € Ec} span a dense subspace of
W, white noise functions and operators are uniquely specified by their
values on the exponential vectors. To be more precise, we recall notation,
The S-transform of ® € W is defined by

Se(£) = (2, ), € Ec,
and the symbol of = € LW, W*) by

E(ﬁa"’?) = «E¢5: ﬁbn»; fﬂ? € EC-

It is one of the most important features of white noise calculus that the
S-transform and the operator symbol are characterized by their holo-
morphy and certain growth condition, for the S-transform see [6] and
for the operator symbol see [4], [16].

By duplicating the Gelfand triple {6} we obtain
(10) WeWCI'(He)®T(He) C (W W)™,
On the other hand, identifying a function on FE§ with one on E” x E*
in such a way that

p@p(x +iy) = $x)w(y),  zyC B, §9 € LHE L),

we come to the isomorphisms:

(11)  T(Hc)®T(He) = LAE* 1) ® L*(E*, i) = L*(Eg, v).
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Combination of {(10) and (11) gives rise to a Gelfand triple which we
shall denote by
(12) D c LAEg,v) C D

This is referred to as a CKS-space over the complex Gaussian space
(E&, v). Since each equivalence class contains a unique continuous func-
tion on Eg,, we may regard D as a space of continuous functions on Eg.
More detailed properties of functions in D are examined in a similar
manner as in [15], [21].

4. Diagonal coherent state representation

The definition of an exponential vector in (9) is applied also to defin-
ing an exponential vector ¢, € W* for z € Ef,. We then put
QZ¢ = «455! ¢»¢Za ¢ € W.

Note that @, € L(W, W*) and the map z — @), is continuous.
It is proved [19] that for any w € D* there exists a unique operator
= € L(W,W*) such that

(13) «E¢E! ¢U» = «w7 QE,TJ))7 {:,7] = E01
where

Gen(z) = Qz(€,7) = (Qute, ¢y = e&EHEM e BE
The operator = defined as in (13) is naturally written in a formal integral:

(14) 2= [ w@Q.v(d)

Eg
and is called the diagonal coherent state representation. A significant
consequence is the following

THEOREM 4.1. [19] Every operator in L(W,W*) admits a unique
diagonal coherent state representation. In particular, the resolution of
the identity holds:

(15) I=| Q.,v(dz).
Eg

For example, the annihilation and creation operators at a point t € R
are expressed respectively in the form:

(16) ay sz* z(£)Q; v(dz), a; = /;5 2(t) Q» v(dz),

*
C
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where z(t) = (2, §;) is the complex white noise [10].

5. Unitarity condition

In order to discuss the unitarity of an operator E on the Fock space
['(Hc) we need the hermitian inner product:

(o, v = (&, ).

For an operator Z we denote by =1 its adjoint with respect to the above
hermitian inner product. As is easily verified, it holds that
===,  peW.

By definition 2 € L(W, W) is called an isometry on I'(Hc) if =2 = I,
and is called a wnitary if both = and =t are isometries, i.e., if Z*
LW, W) and Z'E=ZE" = 1.
Since the exponential vectors {¢; ; £ € Ec} span a dense subspace of
W and hence of TI'(Hc), the condition Z1Z = T is equivalent to

(Ede, Ednl) = Udbe, oo, &m € Ec,

or in terms of the original C-bilinear form:

(17) (Ebe Zon) = (de, ¢a) =&, & e B

Similarly, under the assumption that Z* € L(W,W), the condition
==t = I is equivalent to

(18)  (E%¢a Z'¢) = {be 8 =&, &€ Eo.

We consider the isometricity condition (17). With the help of the res-
olution of the identity (see Theorem 4.1), the left hand side of {17)
becomes

(& 2o = [ (&P 06 Z0) vid)

B f (E0g, PN (Edg, ¢:) v(d2)

ES

=/;*

C

(€

i

,2) E(n, 2) v(dz).
In a similar manner, the left hand side of (18) becomes

(0 =) = [ 2(5,8) 2z, m) wlda),

Eg
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where we used the fact that the measure v is invariant under the complex
conjugation z — z. We thus come to the following

THEOREM 5.1. An operator = € L(W, W) is an isometry on T'(Hg),
ie, == = I if and only if

(19) /* é(f, z) @(n, zyv(dz) = &, &,ne Eg.

Ee

An operator = € L{W, W) with =* ¢ L(W, W) is a unitary on I'(Hc),

j.e., Bt2 = 28! = I if and only if

(20)
/ 5 2) B, 2) w(ds) = / 22 o) v(ds) = &7, £, € Ec.
Eg, B

C

Here is an example. In order to solve certain differential equations
on Gaussian space a transformation group on white noise functions has
been introduced in [2], see also [3] where a restricted case appeared.
With & € (EE™)* and B € L(Eg, Ec) we associate an operator Gy p
defined by

(21) Gy, Bc = B(K’EQM)C{)B@ £ € Eg.

In fact, that G p € L(W, W) follows from the characterization theorem
for operator symbols. It is also known that

G5 Gup = Gy (Bom) v B'B-
By definition {21) we have immediately
Gre.plE,n) = o eI HBEN)

and, in view of (3),
| Gep@)Guptn 5 i)

RER SO LN Lo e(z,Bn)Hf,B_f)y(dz)
Eg
= exp (R, £5™) + (s, 1®™) + (Bn, BE)) -

Hence by Theorem 5.1 the isometricity condition GL pGr,B = I is equiv-
alent to

exp ((R, &™) + (k, ™) + (Bn, Ef)) =&, g neEc,
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which is further equivalent to that £ = 0 and B'B = I. In this case
Go,p coincides with the second quantization of B, that is, Go,p =T'(B).
Summing up,

PROPOSITION 5.2. The operator G p is an isometry on I'(Hc) if and
only if K = 0 and B is an isometry on Hgo. Moreover, G g is a unitary
on T{H¢) if and only if K =0 and B is a unitary on Hc.

However, Theorem 5.1 is not applied to a simple example: Uy = Bt}
where {B(t)} is the standard Brownian motion. Note that {U;} is a
unique solution to the stochastic differential equation:

dU=iUdB—%Udt, Ug=1

or equivalently to the normal-ordered white noise equation:

1
%:(ia;+éat—§)0U, U[)=I.

(A general theory of normal-ordered white noise equations has been
developed in [5].) The symbol of U; is easily computed:

(22) Ui(&,m) = exp (—% + (L, E+m + (€ n)) ;

and the verification of (20) is straightforward.

In fact, Theorem 5.1 is improved slightly with no difficulty as follows.
For notational convenienve an operator = € L(W, W*) is called regular
if the symbaol g, originally a C-valued function on F¢ x Ec, admits an
extension to a function on Ec x E} as a function in L?(E&,v) with
respect to the second argument. For example, U; in (22) is such a
function. In that case, the integral in (19) exists for all {,n € E¢ and
the identity remains meaningful.

THEOREM 5.3. Assume = € L(W,T'(Hc)) is regular. Then E is an
isometry on T'(Hg), i.e, E1Z = I if and only if

/ E(f_,z) E(n, 2) v(dz) = €7, &ne Eg.

Eg

In addition, assume =* € L(W,[(H¢)) and is regular. Then, Z is a
unitary operator on T(Hg), i.e., 212 = ZE1 = I if and only if

[ BEDEma v = [ B8 vz = 47, &ne B
EL Ee

C
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6. Coherent state representation of white noise functions

As is well known, the set of exponential vectors {¢¢; £ € Ec} is
linearly independent but is overcomplete as is illustrated by the identity:

(23) ] e¥ . u(d2) = ¢¢, £ € Ee.
Eg

This is verified immediately by the S-transform and is a consequence of

the reproducing property of the exponential kernels. On the other hand,

due to the uniqueness of the diagonal coherent representaion {Theorem

4.1} one may specify a particular representation of a white noise function

via coherent states with complex Gaussian integral.

Modifying the proof of [16, Chapter 3.5], one may easily check that
the pointwise multiplication of two test white noise functions gives rise
to a continuous bilinear form from W x W into W. Hence, with each
® € W*" we may associate a multiplication operator, denoted by the
same symbol, by the relation:

(g, ¥ = (@, ¢¥), L EW.

Moreover, thus obtained injection: W* — L{(W, W*) is shown to be
continuous.

As usual, let T(v/2) € £{W, W) denote the second quantization of
the scalar operator v2I. Recall that T'(v/2)¢e = ¢ vae for § € Ec and

T'(V2) € T(V2)* € LONV*, W*).

THEOREM 6.1. As a multiplication operator, the diagonal coherent
state representation of © € W* is given hy

(24 ¢ [ ws()Q.u(d),
where -
(25) we(z) = [(V2)*® (Z:/L;) .

Proof. According to the argument in [19, Theorem 5.2], we need to
find @ € (W ® W)* such that

(26) (@, P ® b)) = (BBierimy/va Premimyvahe ST,
The right hand side is computed as

(@, Berinyvabic—impvade EHEE = (@, 6 5]

= (@, T(V2)¢) = (T(V2)"®, ¢} = ((T(V2) D) © do, ¢ © ¢p))-
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We therefore have

@ = (T(V2)*2) @ ¢o.
Let we € D be the element corresponding to @ under the isomorphism
D* = (W @ W)* which extends the correspondence given in (9). Then,
for z = ¢ + iy we have

wa(z) = D(V2) ®(v22)do(y) = T(V2)'@(vV2u),
from which (25) follows immediately. O

Consider the action of both sides of (24) on the vacuum ¢p. Since
Doy = ® and Q.00 = ¢, it follows that

(27) o= /E we(2)¢, v(dz),

which is an identity in W*. Recall that there are continuously many
different representations of a white noise function ® due to the over-
completeness of {¢.}. The coherent state representation of ® specified
as in (27) will be called canonical in the sense of classical-quantum
correspondence.

For example, consider ¢ = ¢¢. By (25) we obtain

+ z z+z -
we(z) = T(V2)* (z—) = (_) = pl#tE {68
Hence, as a multiplication operator we have

b = f SO0 u(dy).
-

C
Therefore, the canonical coherent state representation of ¢ is given by
de = f e(zs£)+(5,5)#(£,£)¢z v(dz),
Eg
which should be compared with (23).

Here is another example. The canonical coherent state representation
of the classical white noise is given by

W, = / (2(t) + 2(8)) . v(dz),
Eg
which is verified with the operator identity W; = a;+a; and (16). While,

Wt:ﬁs 2(t) b v(dz)

x
C
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is also valid but is not canonical. In this connection we note the following
more general identity:

(28) | o mgian) =0,

where © € (EE™)*, m > 1. In fact, (28) follows from the diagonal
coherent state representation of the integral kernel operator:

So,mlK) = jE* (%™, k) Q:v(dz).

C

A complete description of the null kernel of coherent state representation
of a white noise function is investigated in [20].
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