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CHARACTERIZATION OF STRICTLY
OPERATOR SEMI-STABLE DISTRIBUTIONS

GYEONG SUK CHO1

ABSTRACT. For a linear operator @ from R® into R% and 0 < b < 1, the
(@, b)-semi-stability and the strict (Q, b)-semi-stability of probability
measures on R? are defined. The (Q,b)-semi-stability is an extension
of operator stability with exponent @ on one hand and of semi-stability
with index « and parameter b on the other. Characterization of strictly
{@, b)-semi-stable distributions among (@, b)-semi-stable distributions
is made. Existence of (@Q,b)-semi-stable distributions which are not
translation of strictly {@Q, b)-semi-stable distribution is discussed.

1. Introduction

Let R be the d-dimensional Euclidean space. We understand that R?

is the set of real column vectors with d components with inner prod-
d

uct (z,4) = 3o %y for = = (zj)igjca, ¥ = (¥5)1¢5<a and norm
|z| = v/ {x, z). Let End(R%) be the set of linear operators {(endomorphisms)
from R? into R? and Aut(R?) be the set of invertible linear operator (au-
tomorphism) from R? onto R Let B{R?) be the collection of Borel sets
in R%. Let P(R?) be the collection of probability measures (distributions)
defined on B(R?)} and let 7{R?) be the collection of infinitely divisible dis-
tributions defined on B(R®). The characteristic function of u € P(R?) is
denoted by fi(z), z € RY. The t-th convolution power of p € I{R?) is
denoted by pt. For u € P(R%) and T € End(R%), Tu € P(RY) is defined
by (Tu)(E) = p({z : Tx € E}), E € B(R?). The delta distribution at c
is denoted by &,. Let M, (R%) be the class of linear operators on R? all of
whose eigenvalues have positive real parts. For Q € End(RY) and b > 0,
we define b9 = 3°°° (n!}~!{log b)"Q". The indicator function of a set E is
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denoted by Ix(z). Let 0 < b < 1 and Q@ € M, (RY) in this paper through-
out. We call ;x € P(RY) (Q,b)-semi-stable if p € I(R%) and there is c € R4
such that

(1.1) b = b2 6,
We call € P(R?) strictly (Q, b)-semi-stable if u € I(R?) and
(1.2) ub =%

Any p € I{R?) has the Lévy representation (4, v,~), which means
~ . 1,
86 = eap {il2) - s + [ Glaatan
Rd

with G(z,z) = %) —1—i{z,)}(1+|z|?)~1. Herey € R%, A is a symmetric
nonnegative-definite operator on R? satisfying »({0}) = 0 and

/|x[2(1 + |22 tw(dz) < .

These A, v, and ~ are uniquely determined by u, A is called the Gaussian
covariance of u and v is called the Lévy measure of p. It is proved in {2] that
u is (@, b)-semi-stable if and only if the Lévy measure v of u is expressed
as

sy vo)= [ A [ " rega (), pesry,

where

(a) X is a finite measure on Sr defined in Section 2,

(b) He(w) is a real-valued function being right-continuous in u € (0, co)
and measurable in ¢ € Sr such that He(u)u~! is decreasing(in the
wide sense allowing flatness), He(1) = 1 and H¢(bu) = He(u) for
any u and &.

The integral in (1.3} with respect to d (_—%@) is the Lebesgue- Stieltjes

integral in w. This A is uniquely determined by v, and He(u) is unique for
A-almost every £. We call A and H¢(u) the spherical component and the
Q-radial component of v respectively. The representation (1.3) of the Lévy
measure is close to Chorny [4]. A different representation of v is obtained
by Luczak [9], which will be given in Section 3.
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The purpose of this paper is to give a characterization of strictly (Q, b)-
semi-stable distribution and to discuss the relation between (Q,b)-semi-
stability and strict (@, b)-semi-stability.

In {14], Sharpe states that any operator stable distribution with expo-
nent ¢ is a translation of some strictly operator stable distribution with
exponent () if 1 is not an eigenvalue of . But, his statement cannot gener-
alize to operator semi-stable case. This is shown by Example 2.5 provided
in Section 2. The following proposition is easily proved.

PROPOSITION 1.1. Suppose that b is not an eigenvalue of b2. Then, any
(Q, b)-semi-stable distribution is a translation of strictly (Q,b)-semi-stable
distribution.

Proof. Let p be a (Q, b)-semi-stable distribution on R? satisfying the
hypothesis that b is not an eigenvalue of %. Since b — %9 maps R¢ one-to-
one and onto RY, there exists a unique a € R% satisfying

(b—bNa=c forall ceRY

which gives that u * d_, is strictly (@, b)-semi-stable. a

By Proposition 1.1, a main difficulty in the relation between (@, b)-semi-
stability and strict (@, b)-semi-stability lies in the case where b is an eigen-
value of b%.

This paper is organized as follows. In Section 2, the complex representa-
tion for strictly (Q, b)-semi-stable distributions on B¢ and characterization
of translations of strictly (Q,b)-semi-stable distributions on R are given.
These results are obtained by using the decomposition of C% induced by
@ and the formula (1.3). Here C? is the set of complex column vectors
with d components. We then show that, in the case where 1 an eigenvalue
of @, there exists, for any given Q-radial component of Lévy measure, a
(Q, b)-semi-stable distribution which is not a translation of a strictly (Q, b)-
semi-stable distribution. We also discuss some examples. In Section 3,
using the decomposition of B? induced by @ and the representation for
the Lévy measures formulated by Luczak [9], we give another characteriza-
tion of strictly (Q, b)-semi-stable distributions and translations of strictly
(Q, b)-semi-stable distributions in real forms, and show that, in the case
where b is an eigenvalue of b9, there exists a (Q, b)-semi-stable distribution
which is not a translation of a strictly (Q, b)-semi-stable distribution.

Operator semi-stable distributions are studied by Jajte |5}, Luczak [9),
Chorny [4], and others. They are defined as limit distributions of sub-
sequences via {n;} with n;/n;.1 — b for some b € (0,1), of operator
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normalizations of partial sums S,, of sequences of independent identically
distributed random vectors. The operator normalization of S, here is
T,Sn + e, with T, € Aut(R?) and ¢, € R%. We say that u € P(R?) is full
if the support of 4 is not contained in any (d — 1) -dimensional hyperplane.
Agsuming the fullness of p, they prove that u is operator semi-stable if and
only if ¢ is (Q, b)-semi-stable with some 0 < b < 1 and some Q € Aut(R?)
satisfying the condition that the real parts of all eigenvalues are more than
or equal to 1/2. We can similarly define strictly operator semi-stable dis-
tributions, restricting the normalization to ¢, = 0. In the full case, similar
characterization of strict operator semi-stability by strict (¢, b)-semi-stable
stability is possible. The notion of operator semi-stable distribution is an
extension of that of operator stable distribution of Sharpe [14] on the one
hand, and of that of semi-stable distributions of Lévy (8], Shimizu [15],
and Kruglov [7] on the other. Characterization of strictly operator stable
distributions and strictly semi-stable distributions is respectively made by
Sato [12] and Choi [1]. Our results in this paper are extension of results in
[12] and [1]. Some properties of the associated Lévy processes are studied
by Choi {1], and Choi and Sato [3], and Watanabe [16], and the role of the
strictness in the long time behaviors is analyzed.

2. Complex characterization of strictly operator semi-stable
distribution

We begin with some notation used in [11,12,13]. Let 8y, ..., 0410,
denote all distinct eigenvalues of ). Let 8; = «; + i3; with «; and §;
are real. Let ¢ be the number of distinet real eigenvalues and 2r be the
number of distinct non-real eigenvalues of Q(g > 0,7 > 0). We arrange the
eigenvalues so that 6;,...,6,, are real if ¢ > 1 and that €,41,...,0542r,
are non-real and §; = 6,4, for g+1 < j < g+rifr > 1. Let f(¢) be
the minimal polynomial of ). That is, f(¢) is the real polynomial of the
smallest degree satisfying f(Q) = 0 with 1 as the coefficient of the highest
term. Then

fFO=-60)™...(¢- 9q+2r)”q+2r_

Here ny,...,n442, are positive integers satisfying n; < n; for 1 < j <
g+ 2r and n; = ny,, for ¢+ 1 < j < g+, where nj is the multiplicity of
the eigenvalue 6; and n} + -+ ng . =d,n =ni, forg+1<j<g+r.
Thus

[ =A™ frr (),
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where
(—0; for 1<7<¢q
fj(§)= 2 3 .
(C—a;)*+8;° for g+1<j<g+r

We write W; for the kernel of f;{(Q)™ in R% 1 < j < g+ 7. The projector
onto W; in the direct sum decomposition

RI=Wi & & Wy,

is written by U;. We denote the kernel of (Q —6,)™ in C?, 1 < j < g+ 2r,
by V;, that is, V; is the eigenspace of () in the wide sense associated with
the eigenvalue 8; for 1 < j < g+ 2r. Let T be the projector onto Vj; in the
decomposition

Ci=Vi®- - ®Vyior

For z € R%, we see that
Uit=Tjz+Tjprx=Tz+ Tz for g+1<j<g+r

and
Ujg =Tz for 1<j<q.

We denote
D;={(Q—-0)v:veV;} in C% 1<j<q+2r
Let P; be a projector onto D; in G4, 1< j < g+ 2r. We set

J={j:1<j<q+2r satisfying 4% =b and «; >1/2},
I={j:1<j<q+2r satisfying % #b6 and a; >1/2},
F={j:1<j<qg+r satisfying «; >1/2}.

It is easily checked that if j € J, then 6; = 1 4 1Z2% for some integer n.
Let Wr = ®;jerW;, and let

Sr={6eWr:&i=1,|u|>1 forall u>1}.

Any x € Wr is uniquely expressed as z = u9£ with £ € Sp and u € (0, o).
We define ) )

b, €) = T@ep ~ TH %R
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We use C;,0 < j < 7, for constants independent of £ € Sr and u. By
calculation from the form of a{b,u,£), we obtain that

(2‘1) Ia(b1u!‘5)| < CO|UQ£|2'

We write, for z # 0 in R?, a(z) = min{e; : 1 < j < ¢+ 2r,T;z # 0}. For
 such that Tyz # 0, we set n(z,j) = max{n > 0 : (Q - 6;)"T;z # O}.
For z # 0 in R?, we define n(z) = max{n(z,j) : 1 < j < g+ Tz #
0,0; = a{x)} and N = max{n; : 1 <j < ¢+2r}. Let o™ = min{a; : 1 <
j<q+2ra; >3} and o™t = max{a; : 1 < j < q+42r,0; > 1} Then
at < aff) < o™t for £ € Sr. From Lemma 4.1 in [12] (see Lemma 5.1 in
[13] or Lemma 5.6 in [11]), we get that

(2.2) ] < CLu™Hlogu¥~! for 0<u<1/e.
Hence, by (2.1) it follows that
(2.3) la(b, u, )| < Cou®*®|logu|?Y =2 for 0<u<l/e

Set
g5,k(b,u,€) = uﬂf(k!)_l(logu)ka(b,u,f)
for1 < 7<qg+2r,k >0. For £ € Sr, define

(2.4) -

oo Mi—1 ,_. u
w00 =% [ 3 @-0) T eoulon e ()
k=0

jel
(2.5)
n;—1
v [ oo, ~He(w)
a6 =3 X @0 Tesmatein o (5 )

using componentwise integrals of vector-valued functions.

LEMMA 2.1. The functions go(b,&) and g1(b,€) are well-defined, R®-
valued, bounded, and measurable on Sp.

Proof. From (2.2) and (2.3), we get that

/j @] |a(b, u, &)|d (#&(U))

< Cs /“ usa(E)llogulsN—ad (_Hj(u))
)
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for any £ € 5p. We see that

lbn

]E uga(‘f)\log ulSN_Sd (* &(U))
%bn+] u

iyn _
<|(n+1)logb— 1[3""_3/ u3°‘(‘f)d( H&(U))

%bn-{-[ i)
for n =0,1,--- . Let L be a positive integer satisfying 1 < e~ b7, Then
we have that
iyn
/e o) g [ —Helw)
%bn+1 u
lb‘Lfi
_ 1+ L)(a(O)- 1) /’ ENCY (— g(u))
lp—L u

e
—L-1

b
< Rt1+D) et 1) / Ty (—HE(“))
< 1 :

2(nt14Ly(e™ —3)3—3(L+1)a(E) e —He(u)
<b b d
1 i

< b2(n+1+L)(cu"'—%}—L"(L'f'l)OtJFJr .

Hence we get that, for any £ € Sr,

(2.6) /c w38 | log w3V 34 (———_ E(u))
0 u
oo ipn
— Zﬁ u3a(£)|logu|3N—3d (_HE(U’))
n=0" $b"* u
< Oy,

Putting {(u) = 1347, we see that I(u) < 1/2. This gives that, for any
£ € SF}

(27) [ eelavu,9)la (‘ )

1 U

o ()

< C57

—
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because

U el — b

< —He(w)\ _ He(e!) _ He®") 1
/ d( ) b L.

It follows from (2.6) and (2.7) that

(2.8) /0 ~ 1uCe|ab, u, £)|d (‘—5(—”)) <Cg for £€5p.
Since nyet
u¥Ti¢ = u Y (k)7 (logu)*(Q — 6;)" Ty¢,
we have o
9 [ Werdaoue ()

nj—1

e o ymea( Hew
_ fo | X b )@ HJ)kTJf'd( u )

Since u?T; = Tyu?, we have [u®T;¢| < C7{u?¢|. Hence, using (2.8) and
(2.9), we see that go(b, &) and g; (b, £} are well-defined bounded functions on
Sr. Their measurability is obvious. Since T;£ = T;,-§ for g4+1 < j < g+,
we see that go(b,£) = go(b,€) and g1 (b,£) = ¢1(b,€). That is, go(b,£) and
g1(b, &) are R%-valued. i

For j € J, € € Sr and T;£ # 0, we write,

gio0(b,8) = /:0 g;.0(0,u,€)d (ii(“l) )

This is well-defined, since the proof of Lemma 2.1 shows that

fom |g;,0(b, 4, )|d (‘T‘f(“)) < oo

For 7 € J, we see that if { € S, then

g0, &) = /0 ucos(% log w)a(b, u, £)d (—Hi(u))

+1i f0°° usin(lz—fz log u)a(b, u,&)d ( et )

n
og U
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for some integer n. In fact, if j € J, then §; =1 +z'120"';’g

for some integer n.

LEMMA 2.2. Let j € J. Then there is an integer 1 such that

. — 2nm —He(u)
gio0(0,§) = [b’l)ucos(logblogu)d( ” )

. ., 2nw — 5('&))
+z/ usin{—— lo ud(——---—
[6,1) (logb gu) u
for £ € Sr.

Proof. Choose n such that 6; = 1 + i%. Let Ny, Ny be integers such
that —oo < N1 < N3 < c0. Then we see that

2nw —Hg(u)
Isz+1 b1 u COS( log b log u)a(b, u,§)d (T)

Nz 2nm —He(u)
= Z wcos(— logua(b,u,£)d | ———
v Jlenpry o logh T u
_] ucos(fo’g; logu)d (-Hg(u))
[&

1y 1+ [bN2@uQg[? u
2n

_/ ucos(log’},logu) p — H(u)
[5,1) 1+ |b(N1—1)QuQ£iz m

since for any integer k, we have that

2nw ; —H¢(u)
f[bkﬂlbk)ucos(logblogu)a(b,u,f)d( » )

_ 2nmw k —He(u)
—/[b!l)ucos(@logu)a(b,b u,E)d( . .

Hence, by letting Ny — —oo and Ny — oo, it follows that

j:o ucos(% log u)a(h, u, £)d (_—(u))

g
U

2nm . —-H (u))
= ucos(—— logu)d { —2 ,
/[b,l) (logb gv) ( U
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because that |b(N1 " DQuR¢|? — 00 as Ny — —oo and [BV29u%¢)2 — 0
as Ny — 0o. A similar argument shows that

o 2 —-H
./0 usin(% log u)a(b,u, €)d (Tiju—)>

. 2nm —Hg(u))
= usin(-— logu)d | ———— ] .
][b,l) (logb Bu) ( U U

THEOREM 2.1. Let j be a (Q,b)-semi-stable distribution on R® with
Lévy representation (A, v,v). Let A and H¢(u} be the spherical component
and the ()-radial component of v. Then, p is strictly (Q), b)-semi-stable if
and only if

210) 66T =b [ Tylso+ 0)B.ONd) for 1<j<q+n

Proof. Let p be a (Q, b)-semi-stable distribution on R? satisfying (1.1)
with Lévy representation (A4, v,v). Then, p is strictly (Q, b)-semi-stable if
and only if

(2.11) by = b9y + b[sr A(d€) fow ulta(b,u,&)d ("_I%(E‘l) .

As in (2.9), (2.11) is equivalent to
by =197+ [ (0 +- 0. NGE)
r
Hence we get (2.10). O

REMARK 2.1. In an operator stable case (see [12}), the above functions
go(b, &) and g1(b,£) are written in the following forms:

m;—1

=S Y (@- e)kTs{Zu—

jEJ k=0

>< [0 T (= ) (log ) (14 [u9g?)”

k k
= > (ml) % logh)™ Y (1 —6;)"H
m=0 I=m

></0mu‘9j1((I’c—:!)!)—1(logu)lc Idd (1 [u2g?) ™ du},
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and go(b, £) equals the right-hand side of the above with ) e replaced by

ZjEI '

THEOREM 2.2. Let u be as in Theorem 2.1. Then u is a translation of
a strictly (Q, b)-semi-stable distribution if and only if

(2.12) [ 1= Phai, TN =0 for e

Sr

REMARK 2.2. The condition (2.12) in Theorem 2.2 is equivalent to

(2.13) /S T;0:(b,E)NdE) € D; for je .

Proof of Theorem 2.2. Assume that, for some ¢ € R?, u * 4, is strictly
(Q, b)-semi-stable. Then by Theorem 2.1, we have that

G- T+ =b [ wbONE)
jel Sr
and
G- T+ =b [ abON.
i€d Sr
If j € J, then (b—b9)T; = —b 3372 (k) log H)*(Q — ;)" T;. Therefore
(2.13) is a necessary condition for a translation of a strictly (&, b)-semi-

stable distribution. R
Conversely, suppose that (2.13) holds. Set V; = Kernel( —8;),j =

L. 4+ 27‘ Let V be the orthogonal complement of V in V;. Then
V; = V & V The restriction of ¢ — 6; to 17 has image D); and kernel
{0}, which implies dim(D;) = dzm(V). If v; € V; and v; # 0, then
there is a nonnegative integer ng(v;) such that (Q — Bj)”“("i)vj =0 and
(@ —8,)!v; £0 foralll =0,--- ,ng(v;) — 1. We have 1 < ng(v;) < n; and
{(Q —8,)'v;,1 =0,--+ ,no(v;) — 1} is a linearly independent system.

We assert that b — b9 maps I’;'J one-to-one and onto D; for j € J.

To show the assertion, let j € J, v; # 0 and 7; € T/; Denote ng(v;) = ;.
Suppose that T; # 0 and (b— b%)¥; = 0. Then we see that 2 <!, < n; and

-1

(b—bQ)Ej——bZ (&)~ (log bY¥(Q — 0,)%%; = 0.
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This contradicts the linear independence of (@ — 8;)%;,l =0, ---, [; — L.
Hence, b - b9 is one-to-one as a map from f/: to D;. Since dim(D;) =
dz'm(f?j), we see that b — b% maps f/’; opto D; for j € J as desired. Hence,
for j € J, we can choose a unique ~y; € V; such that

6= =T [ ab.ONd) for e,
Sr

Given j ¢ J, let v; € V;, v; # 0, and I; = ng(v;). Then we see that
(b — 6% )u; # 0, which implies that

n‘j-—l
(b—b9; = (b—b6%)w; — 6% Y (k)" (log b)*(Q — ;)" (v;) #0
k=1
by the linear independence of (Q - 8;)'v;,1 = 0,--- ,1; — 1. Hence we see

that, for j ¢ J, b—b? maps V; one-to-one and onto V;. Thus, we can choose
a unique vy; € V; such that

(b— b9); = bT; [ wo(bENdE) for j .
St

We set ¢ = E‘“Lfr 'yj, Noticing that, for g+1 < j < g+7, gjsrrr(bu, &) =

g x(b,u, &) and Tz = Tyx for x € R, and using the uniqueness of vy;,
we see that, for g+1 < j< g+, v+ =7 Hence c e R%. We have

g4-2r

(b~ b69c=(b—b9) Z v = b/ g0+ g1 ){(b, E)A(dE

Notice that-y; = 0-for j ¢ JUI. We conclude that p x d_,4 is strictly
(@, b)-semi-stable by Theorem 2.1. Hence (2.13) is a sufficient condition
for a translation of a strictly (Q, b)-semi-stable distribution.

In order to complete the proof, it is enough to show that the condition
(2.13) is equivalent to {2.12). We see that the condition (2.13) is equivalent
to

[ a-Pima.exnag =o
Since T;g1(b, &) — g;,0(0,€)T;€ € D;, we see that

(I — P)T;1(b, &) = (I — P;)g;,0(b,E)T}¢.
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Hence the condition (2.13) in Remark 2.2 is equivalent to (2.12). The proof
is complete. d

THEOREM 2.3. Assume that 1 is an eigenvalue of (). Suppose that we
are given a real-valued function H¢(u) of u € (0,00) and £ € Sy satisfying
the condition (b). Then, there exists a (Q,b)-semi-stable distribution on
R® such that the Q-radial component of the Lévy measure of p is the given
He(u) and that p is not a translation of any strictly {(Q,b)-semi-stable
distribution.

Proof. We may assume, without loss of generality, that ¢; = 1. We have
I' # 0, since 1 € I'. We choose g € Wi so that (@ — 1)~ 'zg # 0. Put
up = sup{u > 0: u®zy < 1}, then 0 < up < co. Setting uOQ:cO = £y, we see
that & € Wi, & € Sr and (Q — 1)™ ~1¢y # 0. For £ € Sr, we have that

by Lemma 2.2. Hence we see that g o(b,&s) # 0, which implies that

(Q— 1) U1g1(b, &) = g1,0(b, & HQ — 1)™ & #£0.

Hence we have that Uig1(b,&) ¢ D1. Choose a §-distribution at £, as A
Suppose that v satisfies (1.3). Let u be an infinitely divisible distribution
with Lévy representation (0,r,0). We see that u is (@, b)-semi-stable. On
the other hand, we see that

U, [S a1 (b, E)NdE) = U191 (b,60) ¢ Di,

which implies that g is not a translation of a strictly (Q, b)-semi-stable
distribution by Theorem 2.2. J

REMARK 2.3. Theorem 2.3 is not true if we make the assumption that
b is an eigenvalue of < instead of the assumption that 1 is an eigenvalue
of ). The following Example 2.1 shows it.

EXAMPLE 2.1, Letd = 2andlet Q = (_rl_s bsb) Put V; = Kernel(Q—

(1— ilngb))ande Kernel(Q— (1+ilogb)) Then we have that D, = {{(Q~
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(125 v:ve Vi} = {0} and D; = {(Q - (1+zlogb))v v € Vo} = {0}.
Let us take A > 0 and 0 < b < 1 such that | =+ Ogb |< A. For any integer n,
let

Ro, = {U . b(2n+1)/4 <u< b(?n)/4}

and

R2n+1 _ {’U. b(2n+2)/4 <u<h 2n+1)/4}

For any £ € St, we define He(u) for u > 0 by the formula

H(u): A}i-l( 1Og,,10gU+2n+1+A) for u € Ra,
¢ A}|-1(1.3g510gu 2n—14+A) for w€ Rapis

for any n. Then we see that H¢(u) is continuous for » > 0 satisfying the
condition (b). By calculation from the form of He{u)u~!, we obtain that

=2 —HE(U)
uwcos{ — logu)d (m) =0
j[;,,l) (logb u

. =27 —~He{u)
usin(— logu d(—‘g) =0,
\/[;;U (logb & ) u

According to Lemma 2.2, this gives that g1 9(5,£) = 0 and g20(,£) = 0.
This shows that any (@, b)-semi-stable distribution with Lévy representa-
tion (A,v,~) is a translation of a strictly (@, b)-semi-stable distribution by
Theorem 2.2 if the above H(u) is the Q-radial component of the Lévy
measure v.

EXAMPLE 2.2. Let j € J. Assume that the multiplicity of 8, in the
minimal polynomial of @ is 1. In this case, from the fact that D; = {0},
the condition (2.13) for this j in Remark 2.2 is written as

[ oot &)Ti€AdE) = 0

EXAMPLE 2.3, For @ = I, we have that

/S 91,000, E)EN(dE) = 0
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as the condition (2.12}, where S is the unite sphere. In this case, by Lemma
2.2, the above condition is equivalent to

[ exae ]M ud (%ﬁ(“’)) -0,

which is the condition for the Lévy measure of a strictly semi-stable distri-
bution with exponent 1.

EXAMPLE 2.4. Assume that H¢(u)} = 1. Then this is the operator stable
case, and if j € J, then (2.12) gives

2nm

1 cos log u) + 2 sin( 2% log
fS(I_Pj)Tjsx(dﬁ)fb liogs 1o ) Gogs loBY) g
T .

U

for some integer n by Lemma 2.2. Assume that 1 is an eigenvalue of ! and
let 8, = 1. Since

1
]; u_l{cos(l%ngib logu) + isin(%g; log u)}du = 0

for n # 0, the condition (2.12) gives

1
/ (I— Pl)Tlg,\(dg)f u=ldu = 0.
Sr b

This is written as [ (I — P1)U1(§)M(d€) = 0.

ExampLE 2.5. Let d = 2 and @, Vi, Vz be as in Example 2.1. Put
& = ( [1)) Then we have that T, = ( i)’ Toky = ( ft) We can
2 2

choose a positive number A such that A(] % | +1} < 1. Suppose that

B3l

V(B) = /m I5(u®%0)d (%(“)) , BeB(RY

0

and He (u) = A cos(% log u) + 1. Then the condition (b} is satisfied. We
consider 4 with Lévy representation (0,r,0). Direct computation shows

that ;
—27 —He,(u) A _
/b ucos(log 5 logu)d ( " =3 (—log b)
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and

1 — —_—
/ usin(ﬂ log u)d “Ha(W) _ Am.
b logb u

Thus by Lemma 2.2, we conclude that

Tlgl(bigﬂ)

L —2n L2 —He, (u)
—fb u{cos(ia—g—zlogu) +tsm(mlogu)}T1§0d (T)
£0.

This means that
T1g:1(b,%) ¢ D).

Hence, by Theorem 2.2, 1 is not a translation of a strictly (@, b)-semi-stable
distribution.

3. Real characterization of strictly operator semi-stable distri-
bution

From now on we will use a norm | - |¢ which is defined by

1 ,Q
|$|Qz/0 K mldu, z e R

U

This norm is used in [6]. Let B = %, where Q and b are as in the preceding
section. Then, we note that b%,...,b%+2 are eigenvalues of B, which are
not necessarily distinct. Following {10}, let ny,...,%p124,(1 £ 7 < p+25)
be all distinct eigenvalues of B, where p is the number of distinct real
eigenvalues, 2s is the number of distinct non-real eigenvalues of B(p >
O,s>0)and gy, =T; for p+1 < j < p+s. Let n; = o5 + ¢p; with o
and p; being real. Let h({) be the minimal polynomial of B and

R(C) = (€ —m)™ ... (¢ — Mps2s) "7

Thus
R(¢) = ha{QO)™ ... hpys ()07,

where
¢—m; for 1<5<p
hi(¢) =

(C—C'j)2+Pj2 for p+1<j<p+s
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We write Y; for the kernel of h;(B)™ in R4, 1< j € p+s. The projector
onto Y; in the direct sum decomposition

Rd:YlGB---EBYp+s
is written by ®,. Denote
Z; =Kernel(B—m;)™ in C% 1<j<p+2s.
We have
Cl=Z,@® D Zpias.

Let ¥; be the projector onto Z; in the above decomposition. We set

A={j:1<j<p+s satisfying |n;|<b/?}.
Let YA = ®jenY;, let

Sy={zeYy:|z|p<1l and |B 'zl|g>1}

and B(S4) as the class of Borel sets in S5. Assume that b is an eigenvalue
of B. For convenience, let 7, == b. Then we have

Y ={zr e R*: (B-b)™z =0}
We denote
Gy ={(B-bv:veYi}

In [9] Luczak shows that u is (@, b)-semi-stable if and only if the Lévy
measure v of i has the form

31 v(E) = /S S In(Bw)ul(ds), E e B(RY),

An=—00

where 14 is a finite Borel measure on S,. For any integer n, we define

1 1
3.2 anlT) = — ,
(32) @) = 3B aE ~ 17 (Bl

p+285 oo

dab,z) =D Y b an(x)B

j=2 n=—0c0

and -
P1(b,x) = Z b "an(x)B" TPy
n=—oQ
Since B is invertible, for 1 < j7 < p+ 2s, Z; are invariant under B —1, Thus
for any integer n, we see that ¥;B" = B"V¥,.

LEMMA 3.1. The functions ¢o(b, z) and ¢, (b, z) are R%-valued, bounded,
and measurable on Sy.
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Proof. It is.obvious that
(3.3) lan(@)]|B™Halq < [B™H || B z(g + B al}.

For z # 0 in R?, let n(z) = max{|n;| : 1 < j < p+ 25, ¥,z # 0} and let
m(z,j) = max{m > 0: (B —n;)™ ¥,z # 0, ¥,z # 0}. For z # 0 in R,
we define m(z) = max{m(z,j) : 1 <j <p+2s, ¥z #0,|n;| = n(z)} and
M =max{m; : 1 < j < p+ 2s}. Let & € Sx. Note that, for any positive
integer k,

(3.4) - B"z = (g + (B —n))F e
m(z,j)rk k
S (e
=0

This leads to
{3.5) |B*z|o < Con(z)* k™) for k> 1,

where Cj is a positive constant. Further discussion is given in [10, Lemma
4.1]. By (3.3) and (3.5), we get that

an(2)|o|B" o < Con(z)?H ™) (n 4 1)™)
Q Q
+ Con(z)* ™ (n +1)° n{z)

for any nonnegative integer n. Thus
oo
S b lan(@)lgl B alg
n=0
is bounded on Sy, because n(x) < b* and m(z) < M. There is a positive
constant Cy such that, for any nonnegative integer n,
la_n(z)lo|B™zlq < Ch.

This gives that

oC
> bMan(z)loIB T g

n=0

is bounded on S,. Hence we see that

D bMan(@)lo|B M zlg

n=—0co
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is bounded on S,. Since BY,; = ¥,;B, we see that ¢g(bh,z) and ¢1(b,z)
are bounded. Their measurability is obvious. Since ¥, .z = ¥,z for
p+1<j<p+sandz€ R ¢o(b,x) and ¢ (b, z) are R%valued. O

THEOREM 3.1. Let p be a (Q, b)-semi-stable distribution on R% with
Lévy representation (A, v,~). Then, u is a strictly (Q, b)-semi-stable if and
only if

(3.6) (b~ B)d1y =b / #1(b,2)vo (d2),
Sa

and

(3.7) (b~ B)y—b i do(b, x)va(dz) e Y1

Proof. 'The distribution p is strictly (Q,b)-semi-stable if and only if

o0
(3.8) br=By+d [ Y b an(@)B" av(do).
SA n=—oa
This condition (3.8) is equivalent to the following (3.9} and (3.10):
(3.9) b@1y = BO1y+b | ¢i(b, z)p(dr),
Sa

(3.10) by =BU,y+ b/ U o (b, z)vg(dz) for 2<j<p+2s.

Sa

The condition (3.10) is written as

(3.11) Wy (b’y — By - b/ qﬁg(b,x)z/g(dm)) =0 for 2<5<p+2s,
Sa

which means the condition (3.7). For the converse, we see that {3.7) is

equivalent to (3.11), that is, to (3.10). Hence (3.6) and (3.7) together give
(3.8). Thus we complete the proof. O

THEOREM 3.2. Let u be as in Theorem 3.1. Then u is a translation of
a strictly (Q, b)-semi-stable distribution if and only if

(3.12) [3 é1.(b, 2)v0(dz) € G,
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Proof. Assume that, for some ¢, p*8, is strictly (Q, b)-semi-stable. Then
by Theorem 3.1, we have that

b—B)W,(y+c} = bV, do(b,z)vp(dz) for 2<j<p+2s
! ’ 5
A

and

(b—B)®;(y+c)=b [3 616, 2)vo(dz).

Hence we get (3.12). Conversely, assume that the condition (3.12) holds.
Set
Y. = Kemnel(b— B).

Then there exists a subspace }:}1 of ¥] such that Y; = 171 & ?1 We see that
the map b — B restricted to Y7 is one-to-one and onto (1. Hence, we can
choose 7, € Y; such that

(b—B)yi = b fs (b, 2o (da).

Let 2<j <p+s. Ifv; € Y; and v; # 0, then (b — B)v; # 0. Hence b - B
maps Y; one-to-one and onto Y;. Thus, we can choose y; € Y; such that

(b - B)"Yj = b_/g @j@o(b, :B)Ug(d:t})
A
Let ¢ =3 71 ~,. Then c € R%. We have

(b— B)c— b.[s do(b, )y (dx)

p+s

—b/ $1(b, z)vy(dx) +bZ/ &, o (b, z)vo(dz)

—b [ do(b,avolda) = b f $1(5, 2)vo(da) € Vi,
Sa

since ®1¢p(b, z) = 0. This shows that p*d_ 4. is strictly {Q, b)-semi-stable

by Theorem 3.1. O

THEOREM 3.3. We continue to assume that b is an eigenvalue of b¥.
Then, there exists a (@,b)-semi-stable distribution on R® such that pu is
not a translation of any strictly (Q, b)-semi-stable distribution.
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Proof. We have A # (), since b ¢ A. We take an xy € Y] such that
(B — b)ml_l.’ﬂo # 0.

Denoting by My the minimum integer such that [B"zy|g < 1, we get that
BMogg € Sy and (B — b)™ 1 BMog, # 0. We choose the é-distribution at
BMozy as 1. Define v by (3.1). Then there is an infinitely divisible dis-
tribution u with Lévy representation (0, ,0). This u is (@, b)-semi-stable.
For any integer n, we have that (B — b)™ ~1 BMotn+lyz, £ () and

b1 (b, z)vo(dx) = 1 (b, BMoxy)

S
= Z b""an(BM°a:g)BM°+"+1:t;g.

Let us show that
(3.13) ¢1(b, BMogzo) ¢ Gy
Let —o0o < N7 < N3 < 0o and z € Y7. By (3.4), we have

N2 N2_N1

Y bran(@)Brz= Y b7 Mapyy, (@)B Nz

11,=N1 n=0

No—N, {(mi1—1)An n
_ 1—N1 pN —1 [}
=p~NMipM nz;; Antn, (2) ; (I)b (B —b)=z.

Therefore

Ny
(B-6)™"1 3" b "an(z)B"x

n=N,
Nz—N;
= b BM(B - py™~ g Z QrtN, (T)
n=>0
N3
=(B-bt™"1z > an(x),
n=N

since B"(B — b)™ ~lz = b"(B — b)™ ~lx for any nonnegative integer n.
Let N; — —o0 and N3 — oo. Then

Ny

1 1
an(z) = - —
D s
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Letting x = BMox, we get
(B — 6™ 1¢1(b, BMozg) = (B — b)™ ' BMozy # 0.

Thus (3.13) is true. Hence, no translation of p is strictly (@Q, b)-semi-stable
by Theorem 3.2. d
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