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SOME LIMIT THEOREMS FOR POSITIVE RECURRENT
AGE-DEPENDENT BRANCHING PROCESSES

HyEe-JEONG KANG

ABSTRACT. In this paper we consider an age dependent branching pro-
cess whose particles move according to a Markov process with continu-
ous state space. The Markov process is assumed to be stationary with
independent increments and positive recurrent. We find some sufficient
conditions for the Markov motion process such that the empirical dis-
tribution of the positions converges to the limiting distribution of the
motion process.

1. Introduction

We consider an age-dependent branching process evolving from one par-
ticle. That is, the process starts at time 0 with one particle of age 0 and
it dies at time A and produces £ offsprings where A and £ are independent
random variables with distributions G and {px} respectively. Then each
particle dies and produces independently of each other in the same way as
its parent, an so on.

We superimpose on this process the additional structure of movement.
A particle whose parent was at x at its time of birth moves until it dies
according to a Markov process starting at z. The motions of different
particles are assumed independent. When the underlying motion is Marko-
vian and null-recurrent it is known that the empirical distribution of the
geographical state appropriately scaled does converge(see Kang(1999)).

On the other hand, if the underlying motion process is positive recurrent,
one expects that the geographical distribution should mimic the long run
distribution of the Markovian motion. That is, the empirical distribution
(with no scaling) of the position at time ¢ should approach to the limiting
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distribution of the Markov motion process. In this paper we find some suf-
ficient conditions for the motion process which justify this conjecture. The
corresponding results for Galton-Watson processes are available in Athreya
and Kang(1998).

2. Preliminary results

Let {Z(t);t > 0} be an age-dependent branching process evolving from
one particle at time t = 0 whose lifetime distribution is & and offspring dis-
tribution is {p;}. We make the following assumptions throughout. Some-
times they will appear in lemmas and theorems explicitely and sometimes
not, but they will always be in force.

(Al) po=0,

(A2) 1<p=372,7p; <00,

(A3) 3272,(jlog)p; < oo

The assumption (A 1) is primarily for convenience of exposition. Otherwise,
the extinction probability is positive and so one has to keep qualifying “on
the set of non-extinction”. A branching process satisfying (A 2) is said to
be supercritical. (A 3) gurantees (see Athreya and Ney(1972)) the existence
of the almost sure positive limit W of W (¢) = e~ Z(t) with finite moment,
where o = (g2, G) is the Malthusian parameter for ¢ and G defined by the
root of the equation p fom e **dG/(t) = 1. That is, there exists a random
variable W such that

(1) tlim e Z({ty=W as, PW>0)=1, and E(W) <oco.

See Athreya and Ney(1972) for details.

Now let {X(t);t > 0} be the underlying Markov process governing mo-
tion such that X{0) = 0 a.s. Suppose that {X(t};£ > 0} is stationary with
independent increments and has a regeneration set. Further we assume that
the process is positive recurrent. See Assmussen(1986) for these definitions.

For a Borel set B, write P'(z,B) = P.(X(t) € B) and P(z,b) =
Pz, (—00,b]) simply. Then it is known that there exists a unique limiting
distribution m for X (¢) such that the P;-distribution of X (t) converges to
7 in total variation. That is, for any z € R,

IPAX(®) € ) = 7()l| = sup [Po(X(8) € B) =w(B)| =0 as ¢ oo,

where B is the Borel o-algebra.

Even though Z(t) denote the total number of particles alive at time £
in classical branching processes, we abuse the same notation for the point
process describing the positions of particles alive at time ¢ and so Z(t, B)



Some limit theorems 27

denote the number of particles at time ¢ which are in the set B. Note
that Z{t, R) = Z(t). We write Z(t,b) for Z(t,(—o0,b]) unless it does cause
any confusion. We add a subscript z and a superscript a to indicate that
the process begins with one particle of age a¢ and position z at time 0.
Thus Z2(t) is a random counting measure on R and Z%(¢, B) denotes the
number of particles at time ¢ which are in B when the process beging with
one particle of age a at position z at time 0. We write Z°, Z,, Z for
5, Zg, Zg, respectively.

In the proofs to come we make use of the following lemmas. The first
one can be found in Kang(1999).

LEMMA 1. Put M = supgqsup,>efe”*Z%(s)}. If 302, (jlog j)p; <
00, then E(M) < 0.

Put
G(t+y) - Gly)

1-G(y) '

V) =u [ emero),

Jo e (1 — G(t))dt
T eot(1— G(t))dt’
Jo e (1 — G(¢))dt

ufy et Gdt)
Z(t)

W= Z V(aj)}
=

where {a;;5 = 1,---,Z(t)} is the age-chari at time t. The following two
lemmas are in Athreya and Kaplan(1976).

G¥(t) =

Afa) =

] =

LEMMA 2. Define m¥(s) = E{(ZY(s)), then

o821

sup |m¥(s)e”™™ —mV{y)| -0 as s— oco.

y=0

LeMMA 3. Suppose 3 72,(jlog j)p; < co. Then
Vi -1

tl—]f& m =n] a.s.

The proof of the following lemma can be found in Athreya and Kang
{1998).
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LEMMA 4. Let {F,} be a filtration contained in (), B,P). Let
{Xni;n,i=1,2,--- } be a double array of random variables such that for
each n, conditioned on F, the sequence { X,;;i = 1,2,-- -} are independent
a.s. Let {Np;n = 1,2,---} be a nondecreasing sequence of nonnegative
integer valued random variables such that for each n N, is F,-measurable.
Assume

(i) that there exists a random probability measure Q) on [0,00) such that
for some constant 0 < C < o0,

sup P(| Xni| > t|F) < CQ(t,00) forall £>0 as.,

(i) that [;°Q(t,c0)dt <oo as., and

(ifi) that Liminf, 221 > 1 4,
1 &
Then, N_n Z(Xm- — E(Xni))— 0 as asn— oo.

i=1

3. Results and their proofs

We introduce the following notation: For a Borel set B,

Z(t, B)
Z(t)

We write H(t,b) instead of H(¢, (—o0,b]) for simplicity.

H(t,B) =

THEOREM 1. Assume
2) sup |[P'(z,) = 7(J| = 0 as t— oo,

Then for any b € R, H(t,b) 25 n(b) as t — oo, where =% denotes a
convergence with probability 1.

Since the set of half lines generates the Borel o-algebra B we have the
following simple

COROLLARY 1. Under the hypothesis of Theorem 1, for any Borel set
BeB,

H(t,B} > n(B) as. as t— oo.
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Proof of Theorem 1. By appealing to the additive property of branch-
ing process we have the following representation

Z(t)
3) Z(t+s,b) =Y Zzl(s,b),
=1

where {(a;, z;);§ = 1,2,---} is the (age, position)-chart at time ¢ and
Z3(s, %) is the number of particles at time ¢+ s which are in (=00, b] in the
line of descent initiated by the particle of age a; and position z; at time .
Since the motion process is stationary and the motions of particles starting
at the same position identically distributed we get

E(Zz] (s, b)|Ft) = E(Z% ()| F) P*(z;,b)
= m%(s)P*(z;,b),
where m®(s) = E(Z%(s)) and F; is the o-algebra containing all the in-

formation up to time t. Hence starting from (3) we have the following
decomposition

e'"‘” 1 Z(t)‘ aj @ 3 —-rg
mzu +5,b) = 70 JZ:;{Z% (s,b) _ m® (s)P°(x;,b)}e

1 Z(t)
g 2T - mV (@)} e

Z(t)

0 > V(e (P(est) = 7()

| 20
+ 0] ng an(af)ﬂ(b)

= aft, s,b) + b(t, s,b) + c(t, 5,b) + nad(t)w(b), say.
Consequently, we arrived at

H(t+s5,b) = ——_-—_%ZELZ(H 5°)

(4) mZ(t + s)
_a(t, s, b) +b(t,s,b) + c(t, 5,b) + nid(t)r(b)
N a(t, s,00) + b(t, s,00) + n1d(t) '

It is immediate to see that for any b € RU {oo}, and for any ¢ > 0
(5) b{t,s,b) =50, nid(t) 251 as s— oo
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from Lemma 2 and Lemma 3, respectively. Noting that V(y) is uniformly
bounded in g, we have for any ¢ > 0

(6) c(t,s,b) 20 as s— oo.
Now let § > 0 and ¢, = nd, then we have from (1) that

lirn Z(tn+l) = lim e_atn+IZ(tn+1) ,ea(tn+1_t"l)
(7) n—oo Z(ty)  noco emmZ(ty)

=e®>1, as.

Furthermore, since

e~ **Z31(s,b) < M = supsup{e”**Z"(s)}
5>0 a>0

and E(M) < oo by Lemma 1 we conclude from Lemma 4 that for any {s,}
such that s, — o0, a(nd, s,,b) = 0 as n — co. Combining this with (5),
(6) we get

(8) H(né + sn,b) =5 w(b) as n — oo.
Now choose s, = nd and replacing § by % we get
H(né,b) 2% n(b) as n — co.

To complete the proof fix e > 0 and § > 0. Let nd <t < (n+ 1)d and
define

d; = and the particle doesn’t cover a distance > ¢,

1 if jth particle at time nd doesn’t split until (n + 1)4
0 otherwise.

Let {(a;,z;);5 = 1,---,Z(nd}} be the (age,position)-chart at time nd.
Since the lifetime and the movement of a particle are independent,
E(§i|Fns) = P(0; = 1Fns) = P(AY > §|Fns) P(X(8) <€)
= (1 -G (8))P(X(8) <e),
where X (§) = supg<<s{|X ()|} with {X(f);¢ > 0} the underlying motion

process starting at 0.
From the definition of §;, we have the following inequality

Z(né)

Z(t,b) > Y I(z; <b—e)d,
=1
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where I(z < b) is defined by 1 if z < b, 0, otherwise. So

Z(né)

Z(t,b) _ Z(nd) 1
7 ZZt)chS)ZI <b-

Z(nd)
Z(t)

{A(né,b) + P(X(5) < £)B(nd,b)},

where

1 Z(né)

And,b) = 7o D Iz <b—e)-{(§; — (1—G%(E)PX () < &)},
j=1

Z(né)
B(né,b) = 2_(1@ ; I(z; < b—&)(1~ G% (5)).

Tt is simple to check the conditions in Lemma 4 for the summands in
A(né,b) and hence we have A(né,b) 22 0 as n — .
On the other hand

(9)
1 Z(nd) 1 Z(né)
B(né,b) = 705 ; I(z; <b—¢)— Td) 2- }: I(z; < b—e)G%(8)
Z(nd) Z(nJ)

1
= Z(nd) Z T < 5) Z

Since Gs{a) = G%(8) is bounded and continuous except on a countable set
we have

L 209

70 ; G% (6} = /0 G(u) A(du, nd)
E)/WGg(u)A(du) as n — 00,
0

where A(du,nd) is the empirical age point measure at time nd and A(du)
is the limiting stable age distribution. From (8} we conclude that the first
term in (9) converges to m(b— ) a.s. and we obtain

liminf B(né,b) > w(b—¢) — /0'00 Gs(u)A(du) as.

n—oQ
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Further hypothesis (A 1) implies that Z(t) is non-decreasing in t and so we
have by (7) that
(né) —ad

(né) _

Hence
Z(t, b) - o0 -
llggf 70 2 (b~ €) -»/0 Gs{u)A(du))P(X (8) <¢€), as.

Since Gs(u) — 0 as & — 0, we see that f;° Gs(u)A(du) — 0 as 6 — 0 by
Lebesgue convergence theorem. Noting that P(X(8) <¢) - 1asd — 0
we arrive at the following inequality by letting § — 0 and then by letting
e— 0,

i ng 261 20) | o

zt) ~
For the other direction we consider the following inequality
Z(nd)
Z(t) - Z(t,b) > Y I(z; > b+e)d;.
i=1

The same arguments as above establish
liminf(1 ~ H(t,5) > (1= n(b+2) = [ Go(w)A(du) P(X(9) < o)
- a
Letting § — 0 and then letting ¢ — 0, we get the following inequality
liminf(1 — H(t, b)) > 1 — n(b)
t—o0
which completes the proof. O

If we weaken the hypothesis we have the following

THEOREM 2. Assumne for each compact set K,
(11) : su};:' [|PHz,-) — ()] = 0 as t— oc.
13

Then for any b € R,
H{t,b) 25 w(b) as t— oo,
where ﬂ? denotes a convergence in probability.

Proof. We begin with the representation (4). We have shown in the
proof of Theorem 1 that for any 4 >0, b€ RU{oo}, and for any {s,} with
Sn — 00,

(12)
a(né, s,,0) 250, b(nb,sn,b) =0, nyd(nd,b) =51 as n — oo.
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Choose s, = nd and we show that
Z{né)
(13) lim P(- )E:Vaﬂwmwww x(b)] > €) = 0.

n—oo

Let n > 0 be given. Then we can find & > 0 by (1) such that
(14) . .HW<m<g
. Now choose N = N{g,n,h) with

E?’]h

(15) %) < 5y

where Iy = [-N, N] and If; its complement. Then
Z(nd)

Pz X mVleP e t) -0l > )

né £
< P55 & mV@)IP(e5b) - )] > 5)

:cJG N
+P( G0 2 MV@)IPG;0) -7l > )
i EIE
= fn+ Y, say.
By the hypothesis (11) there is np such that for n > ng
sup |P™(x,b) — w(b)| < —
€l
Hence for n > ng Lemma 3 says that
1V (a;)| P™ (25, ) — m(b)!
(n6) z% 7 J
¢ 1 Z(nd) c
Sz"nlm :,_Zl V(a.j);rz as n — 0o.

This implies G, — 0 as n — 00. On the other hand

= Plgi; z; maV (@) P (z;,6) = 7(0)] > 3)
Z(nd, IN)
Z(n)

IA

P =, W(né) > h) + P(W(né) < h)

/\

<G ‘“'*JE(Z(na,va)) + P(W(nd) <h),

33
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where the last inequality comes from Chebyshev’s inequality. By Wald’s
equation we have

e~ E(Z(né, 1)) = e *™ E(Z(n6))P(X (nd) € I)
h
— BW)n(If) < <
Combining this with {14) we get
2 enh n

st =51 2

Being 1 > 0 arbitrary, we have proved (13), that is, we get c(né,b) —— 0.
Substitute g for § we conclude from this and (12) that

H(né,b) 25 7(b) as n — oo.
Adapting the same technique used to complete the proof of Theorem 1 we
can show that
pr O
H(t,b) — n(b) as t— .
COROLLARY 2. Suppose that {P*(z,b);t > 0} is equicontinuous in x on
any compact set K. Then for any b € R,

H(t,b) 2 w(b) as t— oo.

L

Proof. 1t is enough to show that H(né,b) 2L, 7(b) as n — oo for any
8>0. . Givene>0,7>0let h >0and N = N(e,n,h) be as in (14) and
(15), respectively. Then we have seen in the proof of Theorem 2 that

lim supyn < 7.
n—eo
Now we show that (3, = 0 for sufficiently large n. Since P™(z,b) is uni-
formly equicontinuous on the compact set I, there exists ¢’ > 0 such that
for any n > 1, and for x,y € Iy,

(16) PY(a,b) = Py, b) < = i fz—yl <&
By the compactness of Iy, we can find finite points y1, -,y in Iy such
that :

k
In C U B{yi,€'),
i=1
where B(y,e) = (y — ¢,y +¢€). So for each z € Iy, there exists z’ €
{y1," - ,yx} such that |z — 2] < &’. Now choose ng such that for n > ng
(17) sup [P (yi,b) = m(b)| < -

1<i<
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Soifn> ng we have

ms) > 1P™(x5,b) — w(b)]

.’EEIN

_Z(n5 3 1P (25,5) — P(ah, )| + [P (), b) ~ (b))
IJEIN
SZ( Z( += ) by (16) and (17)
.’.EJEIN
e Z(nd,Iy) _ €

That is, for n > ng we have 5, = 0. Hence

Z(né)
hmsupP 0 Z nV aJ)|P"6(a;J,b) — (b} >¢) <.
n—00,
Being 5 > 0 arbitrary, we conclude that
Z{nd) 0
: - . ndy,. _ —
lim P( %) ; mV(a;)|P™(z;,b) — (b)| > €) = 0.
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