PICARD VALUES AND NORMALITY CRITERION

  • Published : 2001.05.01

Abstract

In this paper, we study the value distribution of meromorphic functions and prove the following theorem: Let f(z) be a transcendental meromorphic function. If f and f'have the same zeros, then f'(z) takes any non-zero value b infinitely many times.

Keywords

References

  1. Meromorphic functions W. K. Hayman
  2. Volue distribution theory L.Yang
  3. Ann. Math. v.70 Picard values of meromorphic functions and their derivatives W. K. Hayman
  4. Rev. Mat. Iber. v.11 On the singularities of the inverse to a meromorphic function of finite order W. Bergweiler;A. Eremenko
  5. Indian J. Pure appl. Math. v.30 no.3 Normality criteria concerning sharing values Y. Xu
  6. Analysis (to appear) Shared values and normal families X. C. Pang
  7. Bull. of Hong Kong Math. Soc. v.1 On the Product of Meromorphic Function and its Derivative W. Bergweiler
  8. Acta Math. Sinica v.14 no.1 Picard Values and Normal Families of Meromorphic Functions with Multiple Zeros Y. F. Wang;M. L. Fang
  9. Science in China v.36A no.6 Improvement of Marty's criterion and its application H. H. Chen;Y. X. Gu
  10. Bull. of London Math. Soc. v.18 Rational deficient functions of meromorphic functions G. Frank;G. Weissenborn
  11. Arch. Math. (Basel) v.64 On the zeros of certain homogeneous differential polynomials W. Bergweiler
  12. Analysis v.20 A note on a problem of Hayman M. L. Fang