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DIRECT DETERMINATION OF THE DERIVATIVES

OF CONDUCTIVITY AT THE BOUNDARY FROM

THE LOCALIZED DIRICHLET TO NEUMANN MAP

Gen Nakamura and Kazumi Tanuma

Abstract. We consider the problem of determining conductivity

of the medium from the measurements of the electric potential on

the boundary and the corresponding current flux across the bound-

ary. We give a formula for reconstructing the conductivity and its

normal derivative at the point of the boundary simultaneously from

the localized Dirichlet to Neumann map around that point.

1. Introduction

Let Ω ∈ Rn (n ≥ 2) be a bounded domain with Lipschitz boundary
∂Ω. Physically Ω is considered as an isotropic, static and conductive
medium with conductivity γ ∈ L∞(Ω). When an electric potential f ∈
H1/2(∂Ω) is applied to the boundary ∂Ω, the potential u solves the
Dirichlet problem

(1) ∇ · (γ∇u) = 0 in Ω, u|∂Ω = f.

Assume that there is a constant δ > 0 such that γ(x) ≥ δ (a.e. x ∈ Ω).
Then, it is well known that there exists a unique weak solution u ∈
H1(Ω) to (1). Define the Dirichlet to Neumann map Λγ : H1/2(∂Ω) −→
H−1/2(∂Ω) by

(2) 〈Λγf, g〉 =

∫

Ω

γ∇u · ∇v dx (g ∈ H1/2(∂Ω)),

where u is the solution to (1), v is any v ∈ H1(Ω) satisfying v|∂Ω = g
and 〈 , 〉 is the bilinear pairing between H1/2(∂Ω) and H−1/2(∂Ω).
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Since (1) implies that (2) is independent of such v, Λγ in (2) is well

defined. Also, when f ∈ H3/2(∂Ω), γ ∈ C1(Ω) and ∂Ω is C2, we see
that Λγf = γ∇u ·n, where n is the unit outer normal to ∂Ω. Hence Λγf
is the current flux across ∂Ω produced by the potential f on ∂Ω.

The problem of determining conductivity of the medium from the
measurements of the electric potential on the boundary and the corre-
sponding current flux across the boundary is expressed as

Inverse Problem : “Determine γ(x) from Λγ”.

Since this problem was posed by A. P. Calderon, many results on
uniqueness, stability, reconstruction for this inverse problem have been
proved by many authors. Here we give a brief review of some of the
previous works on reconstruction. When γ and ∂Ω are C∞, using the
fact that Λγ is a pseudodifferential operator in this case, Sylvester and
Uhlmann [9] showed how to recover γ and all of its derivatives on ∂Ω from
the symbol of Λγ . When ∂Ω is Lipschitz smooth, from Λγ Nachman [4]
recovered γ on ∂Ω if γ ∈ W 1,p(Ω) with p > n and recovered the first
normal derivative of γ on ∂Ω if γ ∈W 2,p(Ω) with p > n/2.

On the other hand, pointwise reconstruction of the coefficients of
the equations from the localized Dirichlet to Neumann map has been
studied by Brown [2] for the conductivity equation and by Robertson [8]
for the elasticity equation. For x0 ∈ ∂Ω, they assumed some regularity
conditions on ∂Ω and on the conductivity or the elastic tensor locally
around x0, and reconstructed its value at x0. Recently, Nakamura and
Tanuma [5] reconstructed the higher order derivatives of γ at x0 ∈ ∂Ω
inductively according to the regularity which γ and ∂Ω have around x0.

In this article we give a formula for reconstructing γ and its normal
derivative at x0 ∈ ∂Ω simultaneously from the localized Λγ around x0.
Our formula is straightforward. In fact, in Nakamura and Tanuma [5]
(and in Nachman [4]), to recover the normal derivative of γ at x0 ∈ ∂Ω,
one needs to know not only the value γ(x0) but also all the values of γ in
a neighborhood of x0 on ∂Ω. Our new formula needs not any information
of γ but only some regularity assumption on γ around x0.

We note that a reconstruction formula for the shape of the inclusion
in Ω from Λγ was given by, for example, Ikehata [3].

For the elasticity equation, there are other works by Akamatsu, Naka-
mura and Steinberg [1], Nakamura, Tanuma and Uhlmann [6], Nakamura
and Uhlmann [7].

In this article, to make the essential part clear we restrict our argu-
ments to the case where the boundary is flat around x0 ∈ ∂Ω.
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2. Result

We assume that ∂Ω is flat around x = 0 ∈ ∂Ω and that Ω, ∂Ω are
given by

Ω = {xn > 0}, ∂Ω = {xn = 0}

locally around x = 0, where x = (x′, xn) = (x1, · · · , xn−1, xn).

Let t = (t′, 0) = (t1, · · · , tn−1, 0) be any unit tangent to ∂Ω at x = 0.
Let η(x′) ∈ C2

0 (Rn−1) satisfy

(3) 0 ≤ η ≤ 1,

∫

Rn−1

η2 dx′ = 1, suppη ⊂ {|x′| < 1}.

For any positive integer N , put

(4) φN (x′) = e
√
−1 Nx′·t′η(

√
Nx′).

Assuming that γ is continuous around x = 0, Brown [2] and Robertson
[8] proved that

(5) lim
N→∞

N
n−3

2 〈ΛγφN , φN 〉 = γ(0).

Our main result is the following.

Theorem. Let η(x′) ∈ C4
0 (Rn−1) satisfy (3) and let φN (x′) be given

by (4). Put

ψN (x′) = e
√
−1

N
2

x′·t′η(
√
Nx′).

Assume that Dα′

x′Dαn
xn
γ is continuous around x = 0 for any multi-index

(α′, αn) such that |α′| + 2αn ≤ 2. Then,

(6)

lim
N→∞

N
n−1

2

[

4〈ΛγψN , ψN 〉 − 2〈ΛγφN , φN 〉
]

=
∂

∂xn
γ(0) + 3 γ(0)

∫

Rn−1

(

|∇x′η|2 − (t′ · ∇x′η)2
)

dx′.
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Remarks.

1. In our inverse problem, the left hand side of (6) is observable. On the
other hand, the integral

∫

Rn−1

(

|∇η|2−(t′ ·∇η)2
)

dx′ in the right hand
side is controllable, that is, this integral is determined explicitly from
the sequences of Dirichlet data {φN} and {ψN} and we can choose

additional sequences {φ̃N} and {ψ̃N} so that this integral has another
value. Therefore, we obtain a 2×2 system of equations which can be
solved for γ(0) and ∂

∂xn
γ(0) simultaneously.

2. By (5) and limN→∞N
n−3

2 < ΛγψN , ψN >= γ(0)/2, N
n−3

2 times the
quantity in [·] of the left hand side of (6) tends to zero as N → ∞.

3. Since the suppots of φN and ψN are in {|x′| ≤ 1/
√
N}, the Dirichlet

to Neumann map Λγ in (6) is localized around x = 0 more closely as
N → ∞.

4. In the case where ∂Ω is curved around x = 0, assuming that ∂Ω is
locally C3 at x = 0 we obtain the analogous reconstruction formula.

5. Analogous results will hold for reconstruction of higher order deriva-
tives of γ at the boundary, for n(≥ 3) dimensional anisotropic con-
ductivity equations and for n(≥ 2) dimensional elasticity equations.

3. Outline of proof

Let ζ(xn) ∈ C∞([0,∞)) satisfy 0 ≤ ζ ≤ 1, ζ(xn) = 1 for 0 ≤ xn ≤ 1/2
and 0 for 1 ≤ xn and put

ζN (xn) = ζ(
√
Nxn).

From the definition (2) it follows that

(7)

4〈ΛγψN , ψN 〉 − 2〈ΛγφN , φN 〉

= 4

∫

Ω

γ∇vN · ∇(ζNΨN ) dx− 2

∫

Ω

γ∇uN · ∇(ζNΦN ) dx,

where vN ∈ H1(Ω) satisfies

(8) ∇x · (γ∇xvN ) = 0 in Ω, vN |∂Ω = ψN ,

uN ∈ H1(Ω) satisfy

(9) ∇x · (γ∇uN ) = 0 in Ω, uN |∂Ω = φN ,
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ΨN (x) and ΦN (x) are H1(Ω) extensions of ψN and φN ∈ H1/2(∂Ω)
respectively, and these are given below by (11) and (12).

Introducing the scaling transformation

(10) yi =
√
N xi (i = 1, 2, · · · , n− 1), yn = N xn,

let

(11) ΨN (x) = e
√
−1

N
2

x′·t′ e−
yn
2

2
∑

l=0

N
−l
2 Vl(y

′, yn)

be an approximate solution to (8) such that

∇x ·
(

γ∇xΨN (x)
)

= o(N) (N −→ +∞)

uniformly on the set {|y′| < 1, 0 ≤ yn < +∞} and

ΨN (x)|∂Ω = ψN ,

where y′ = (y1, · · · , yn−1), V0(y
′, yn) = η(y′), and Vl(y

′, yn) (l ≥ 1) are
polynomials of yn with Vl(y

′, 0) = 0 whose coefficients are C∞ functions
of y′ compactly supported in {|y′| < 1}. Similarly, let

(12) ΦN(x) = e
√
−1Nx′·t′ e−yn

2
∑

l=0

N
−l
2 Ul(y

′, yn)

be an approximate solution to (9) such that

∇x ·
(

γ∇xΦN (x)
)

= o(N) (N −→ +∞)

uniformly on the set {|y′| < 1, 0 ≤ yn < +∞} and

ΦN (x)|∂Ω = φN ,

where U0(y
′, yn) = η(y′), and Ul(y

′, yn) (l ≥ 1) are polynomials of yn

with Ul(y
′, 0) = 0 whose coefficients are C∞ functions of y′ compactly

supported in {|y′| < 1}. Note that we use the regularity condition on γ
when constructing ΨN(x) and ΦN (x). In fact,

V1(y
′, yn) =

√
−1 (t′ · ∇η)(y′) yn,(13)

V2(y
′, yn) = (g0(y

′) + g1(y
′))yn +

1

2
g1(y

′)y2

n,
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where

g0(y
′) =

n−1
∑

i=1

∂2η

∂y2
i

(y′) +
η(y′)

2γ(0)

(√
−1

n−1
∑

i=1

ti
∂γ

∂xi
(0) − ∂γ

∂xn
(0)

)

,

g1(y
′) = −

n−1
∑

i,j=1

ti tj
∂2η

∂yi∂yj
(y′)

and

U1(y
′, yn) =

√
−1 (t′ · ∇η)(y′) yn,(14)

U2(y
′, yn) = (h0(y

′) + h1(y
′))yn + h1(y

′)y2

n,

where

h0(y
′) =

1

2

n−1
∑

i=1

∂2η

∂y2
i

(y′) +
η(y′)

2γ(0)

(√
−1

n−1
∑

i=1

ti
∂γ

∂xi
(0) − ∂γ

∂xn
(0)

)

h1(y
′) = −1

2

n−1
∑

i,j=1

ti tj
∂2η

∂yi∂yj
(y′).

For the details of construction of them, we refer to [5].
Put

vN = ΨN + sN , uN = ΦN + rN .

Substituting them into (7) we have

4〈ΛγψN , ψN 〉 − 2〈ΛγφN , φN 〉

=

∫

Ω

γ
(

4∇ΨN · ∇(ζNΨN) − 2∇ΦN · ∇(ζNΦN )
)

dx

+ 4

∫

Ω

γ∇sN · ∇(ζNΨN) dx− 2

∫

Ω

γ∇rN · ∇(ζNΦN) dx

= I + II + III,

where

I =

∫

Ω

γ
(

4∇ΨN · ∇(ζNΨN) − 2∇ΦN · ∇(ζNΦN )
)

dx,

II = 4

∫

Ω

γ∇sN · ∇(ζNΨN) dx,

III = −2

∫

Ω

γ∇rN · ∇(ζNΦN ) dx.
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From the arguments in [5, 8], the estimates for II and III can be given
as

II = o(N−n−1

2 ), III = o(N−n−1

2 ) (N −→ +∞).

Moreover, noting the supports of ζNΨN (y) and ζNΦN (y), we put

DN =
{

|x′| ≤ 1√
N
, 0 ≤ xn ≤ 1

2
√
N

}

,

D′
N =

{

|x′| ≤ 1√
N
,

1

2
√
N

≤ xn

}

and rewrite I as

I =

∫

DN

γ
(

4∇ΨN · ∇ΨN − 2∇ΦN · ∇ΦN

)

dx,

+

∫

D′

N

γ
(

4∇ΨN · ∇(ζNΨN) − 2∇ΦN · ∇(ζNΦN )
)

dx

= I1 + I2,

where

I1 =

∫

DN

γ
(

4∇ΨN · ∇ΨN − 2∇ΦN · ∇ΦN

)

dx,

I2 =

∫

D′

N

γ
(

4∇ΨN · ∇(ζNΨN ) − 2∇ΦN · ∇(ζNΦN)
)

dx.

From (11) and (12) we see that

I2 = O(e−
√

N/2) (N −→ +∞).

Therefore,

lim
N→∞

N
n−1

2

[

4 < ΛγψN , ψN > −2 < ΛγφN , φN >
]

= lim
N→∞

N
n−1

2 I1.

Now we rewrite (11) and (12) as

ΨN (x) =

2
∑

l=0

Ψl
N (x), ΦN(x) =

2
∑

l=0

Φl
N(x)
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where

(15)
Ψl

N (x) = e
√
−1

N
2

x′·t′ e−
N
2

xn Vl(
√
Nx′, Nxn)N− l

2 ,

Φl
N(x) = e

√
−1Nx′·t′ e−Nxn Ul(

√
Nx′, Nxn)N− l

2 , l = 0, 1, 2.

The leading terms of ΨN and ΦN , that is, Ψ0

N and Φ0

N are

Ψ0

N (x) = e
√
−1

N
2

x′·t′ e−
N
2

xnη(
√
Nx′),

Φ0

N (x) = e
√
−1Nx′·t′ e−Nxnη(

√
Nx′).

Note that

∇Ψ0

N (x) =

[

N

2

(√
−1 t′

−1

)

η(
√
Nx′) +

√
N

(

(∇y′η)(
√
Nx′)

0

)]

× e
√
−1

N
2

x′·t′ e−
N
2

xn

and

∇Φ0

N(x) =

[

N

(√
−1 t′

−1

)

η(
√
Nx′) +

√
N

(

(∇y′η)(
√
Nx′)

0

)]

× e
√
−1Nx′·t′ e−Nxn .

Hence we see that in N
n−1

2 I1, the contribution only from the leading
terms Ψ0

N and Φ0

N is

N
n−1

2

∫

DN

γ
(

4∇Ψ0

N · ∇Ψ0

N − 2∇Φ0

N · ∇Φ0

N

)

dx

= N
n−1

2 N2

∫

DN

γ(x′, xn) η2(
√
Nx′) 2(e−Nxn − 2e−2Nxn) dx

+ N
n−1

2 N

∫

DN

γ(x′, xn)
∣

∣(∇y′η)(
√
Nx′)

∣

∣

2
2(2e−Nxn − e−2Nxn) dx,

and after the change of variables (10),
(16)

= N

∫

√
N/2

0

∫

|y′|≤1

γ
( y′√

N
,
yn

N

)

η2(y′) 2(e−yn − 2e−2yn) dy′dyn

+

∫

√
N/2

0

∫

|y′|≤1

γ
( y′√

N
,
yn

N

)
∣

∣(∇y′η)(y′)
∣

∣

2
2(2e−yn − e−2yn) dy′dyn.
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On the other hand, from the condition on the regularity of γ we can
expand it as

γ
( y′√

N
,
yn

N

)

= γ(0′, 0) +
1√
N

∑

|α′|=1

∂|α
′|

∂x′α
′
γ(0′, 0)y′

α′

+
1

N

∑

|α′|=2

1

α′!

∂|α
′|

∂x′α
′
γ(0′, 0)y′

α′

+
1

N

∂

∂xn
γ(0′, 0)yn + o(

1

N
) (N −→ +∞).

Substituiting this into (16), and using (3) and the equalities
∫

√
N/2

0

e−yn − 2e−2yn dyn = O(e−
√

N/2),

∫

√
N/2

0

yn(e−yn − 2e−2yn) dyn =
1

2
+O(

√
Ne−

√
N/2),

∫

√
N/2

0

2e−yn − e−2yn dyn =
3

2
+O(e−

√
N/2) (N −→ +∞),

we obtain

N
n−1

2

∫

DN

γ
(

4∇Ψ0

N · ∇Ψ0

N dx− 2∇Φ0

N · ∇Φ0

N

)

dx

=
∂

∂xn
γ(0′, 0) + 3 γ(0′, 0)

∫

Rn−1

|∇x′η|2 dx′ + o(1) (N −→ +∞).

By (13) and (14), the second terms of ΨN and ΦN , that is, Ψ1

N and Φ1

N

are

Ψ1

N (x) = e
√
−1

N
2

x′·t′ e−
N
2

xn
√
−1(t′ · ∇y′η)(

√
Nx′)NxnN

−1

2 ,

Φ1

N (x) = e
√
−1Nx′·t′ e−Nxn

√
−1(t′ · ∇y′η)(

√
Nx′)NxnN

−1

2

and then

∇Ψ1

N (x) =

[√
N

2

(√
−1 t′

−1

)√
−1(t′ · ∇y′η)(

√
Nx′)Nxn

+
√
N

(

0′

1

)√
−1(t′ · ∇y′η)(

√
Nx′)

+
√
−1

(

∇y′(t′ · ∇y′η)(
√
Nx′)

0

)

Nxn

]

× e
√
−1

N
2

x′·t′ e−
N
2

xn ,
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∇Φ1

N (x) =

[√
N

(√
−1 t′

−1

)√
−1(t′ · ∇y′η)(

√
Nx′)Nxn

+
√
N

(

0′

1

)√
−1(t′ · ∇y′η)(

√
Nx′)

+
√
−1

(

∇y′(t′ · ∇y′η)(
√
Nx′)

0

)

Nxn

]

× e
√
−1Nx′·t′ e−Nxn .

Hence we see that in N
n−1

2 I1,

N
n−1

2

∫

DN

γ
(

4(∇Ψ0

N · ∇Ψ1

N + ∇Ψ1

N · ∇Ψ0

N)

− 2(∇Ψ0

N · ∇Ψ1

N + ∇Ψ1

N · ∇Ψ0

N )
)

dx

becomes after the change of variables (10),

∫

√
N/2

0

∫

|y′|≤1

γ
( y′√

N
,
yn

N

)

(

t′ · ∇y′(t′ · ∇y′η)η(y′) − (t′ · ∇y′η)2(y′)
)

× 4yn(e−yn − e−2yn) dy′dyn

which tends to

3γ(0′, 0)

∫

Rn−1

t′ · ∇y′(t′ · ∇y′η)η(y′) − (t′ · ∇y′η)2(y′) dy′

as N −→ +∞.
In the same way, we see that in N

n−1

2 I1,

N
n−1

2

∫

DN

γ
(

4∇Ψ1

N · ∇Ψ1

N − 2∇Φ1

N · ∇Φ1

N

)

dx

tends to

3γ(0′, 0)

∫

Rn−1

(t′ · ∇y′η)2(y′) dy′

as N −→ +∞. Moreover, it can be easily checked that in N
n−1

2 I1, the
other contributions from (15) tend to zero as N −→ +∞.

Finally, integrating t′ · ∇y′(t′ · ∇y′η)η(y′) by parts, we obtain the
theorem.
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