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ON THE JOINT WEYL AND BROWDER
SPECTRA OF HYPONORMAL OPERATORS

YOUNG-YOON LEE

ABSTRACT. In this paper we study some properties of the joint
Weyl and Browder spectra for the slightly larger classes containing
doubly commuting n-tuples of hyponormal operators.

1. Introduction

Let H be a complex infinite dimensional Hilbert space and B(H)
denote the Banach algebra of all bounded linear operators acting on H.
‘Throughout this paper we let T = (T3, --,7,) denote a commuting
n-tuple of operators in B(H). Recall ([5], [7], [13]) that T is said to
be (Taylor) invertible if the Koszul complex associated with T is exact
at every stage and is said to be (Taylor) Fredholm if all cohomologies
of the Koszul complex associated with T is finite dimensional. We let
o7(T) and o1.(T) denote the Taylor spectrum and the Taylor essential
spectrum of T, respectively. If A € o7(T) \ o7.(T), then the indez of
T — A, denoted by ind(T — )), is defined by the Euler characteristic
of the Koszul complex associated with T — A and let o} (T) denote the
Toylor- Weyl spectrum. We also recall ([10], [11], [12], {13]) that T is said
to be ( Taylor) Browder if T is Fredholm and there exists a deleted open
neighborhood Ny of (0 € C™ such that T — A is invertible for all A € N,.
Then the Taylor-Browder spectrum, denoted by o} (T), is defined by

(1.1) 0 (T} = o7.(T) Uaccop(T),

where accor(T) denotes the set of accumulation points of the Taylor
spectrum of T. Let X(H) denote the set of all compact operators acting
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on H and let K = (Kj. .-, K,) € K(H)" denote an n-tuple of compact
operators. In [2] a joint Weyl spectrum, denoted by o2 (T), is defined
by

(1.2) oo (T)= ()| {or(T+K)}
Kek(H)n

and in [13] a joint Browder spectrum, denoted by oZ(T), is defined by

(13) o}(T)= [} {or(TWK)},
KeK(H)n

where T & K means a commuting sum such that T + K with T;K; =
K;Tj for all 4, j.

Also, if there exists a non-zero vector x such that
(T; —X)z=0 foralli=1,---n,
then A = (A1,--- , An) € C™ is called a joint eigenvalue of T. We denote
the set of all joint eigenvalues.by 0,(T) and the set of isolated eigenvalues

of finite multiplicity by wgo(T).

It is well known([13]) that in the case of an arbitrary single operator
T € B(H)

(14) 7u(T) = 03,(T) C 04 (T) = o3(T)
and in case of a normal operator T' € B(H)
(1.5) 0u(T) = 03 (T) = o} (T) = o}(T).

However, the situation in case of an n-tuple of operators is different
in general. It is well known ([13]) that for a commuting n-tuple T of
arbitrary operators

(1.6) 0.(T) € 0%(T) € o(T) C a3 (T)

w

and for a commuting n-tuple T of normal operators

(1.7) 74 (T) = 0,(T) = 04 (T) = o3(T).
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Recall([13], [15]) that an operator T € B(H) is said to be M-hyponormal
if for every A € C there exists a positive number M such that

(T ~ AT = A)* < M(T = \)"(T = A).

We may note that if M = 1, then T is hyponormal. In [13], it is well
known that for a doubly commuting n-tuple T of M-hyponormal oper-
ators

(1.8) 3(T) = o7(T) \ moo(T).

Recall([1}, [3], [4], [10]) that an operator T € B(H) is said to be p-
hyponormal if (T*T)? — (TT*)? > 0 for some p € (0,1). If p=1,T'is
just hyponormal.

It is well known that the class of p-hyponormal operators properly
contains the class of hyponormal operators and p-hyponormal operators
have no general relations with M-hyponormal operators.

In this paper we give an extension of (1.7) and an analogue result of
(1.8) for some doubly commuting n-tuples of p-hyponormal operators.

2. Main results

Following Frunzi([9]} we say that a commuting n-tuple T has the
single valued extension property, say SVEP, if, for any open polydisk
D c C", the Koszul complex K(T — X, O(D, H)) has vanishing ho-
mology in positive degrees. Here O{D, H) denotes the Frechét space
of H-valued analytic functions on D. There are many examples of n-
tuples with the SVEP. As a typical example we mention all commuting
n-tuples of analytic Toeplitz operators acting on the Bergman space
of a bounded pseudoconvex domain in C™(c.f., [7]). We shall write
poo(T) := isoor(T) \ o7.(T) for the (joint) Riesz points of o (T).
Then we can notice that the set pog(T) consists of all isolated points
that the associated spectral space is finite dimensional.

THEOREM 1. Let T be a doubly commuting n-tuple of M -hyponormal
operators with the SVEP. Then

(2.1) 73,(T) = 04 (T) = 0} (T) = 0;,(T) = o7 (T) \ 700(T).
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PROOF. Since the fourth equality in (2.1} is just (1.8) and from (1.6)
oy(T) € 05, (T) € 05(T) C 03(T),

it suflices to show that

We calim that

(2.2) poo(T) = isoor(T)\ 6L (T) = o7(T) \ o5, (T).

Indeed, the first equality in (2.1) follows from the continuity of the index
([51,[16]). And, for A € isoop(T), it is well known ([8, (2.4)}) that T — X
is Fredholm if and only if the spectral space corresponding to A is finite
dimensional, and so the second equality immediately follows. On the
other hand, since T has the SVEP, from [14] we have

(2.3) poo(T) = o7(T) \ 0,,(T).
Hence (2.2) and (2.3) complete the proof. ]

As in (3] or [10], let T have the polar decomposition T' = U|T'| and let
|i"’|1/2UIT|1/2 Let T' have the polar decomp031t10n T = V|T|. The
operator T is then defined by T = |T|}/2V|T|!/2. By the consequence of
Léwner’s inequality if 7' is p-hyponormal, then T is also ¢-hyponormal
for every 0 < g < p. Thus throughout this paper we can assume, without
loss of generality, that 0 < p < 1/2. If T is p-hyponormal, then T is
1/2-hyponormal and 7 is hyponormal([1, CoroHary 3]). We let HU(p)
denote the class of all p-hyponormal operators that the partial isometry
U in the polar decomposition T = U|T| is unitary.

Recall ([5], [6]) that the left (righi) joint spectrum, denoted by o¢(T)
{o+(T)), of T is defined by the set of all points A = (A1, --,A,) € C"
such that {1; — A;};<,<, generates a proper left (right) ideal in the
algebra B(H). Let C(H) = B(H)/K(H) be the Calkin algebra with the
canonical map « : B(H) — C(H). Then the left (right) joint essential
spectrum, denoted by o4 (T} (0,.:(T)), of T is defined by

04e(T) = 0¢(w(T)) (67e(T) = 0, (x(T))),
where #(T) = (x(T1), - ,7(Th}).
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In the view of Theorem 6 in [3], the following theorem give an exten-
sion of Theorem 2.3 proved in [10] for a doubly commuting n-tuple of
operators in HU (p).

THEOREM 2. Let T be a doubly commuting n-tuple of p-hyponormal
operators. Then

(2.4) a3 (T)\ [0] = {o(T) \ mao(T)} \ 0],

where [0] = {(A1, -+, ) € C* : A; = 0 for at Jeast one it € [ =
{1,---,n}}.

PrOOF. From Theorem 1 in [4] we have

(2.4) or(T) ='or(T), where T = (T1,- -+, Tn).

Since T is a doubly commuting n-tuple of hyponormal operators, by (6,
Theroem 2.8] we have

(2.5) op(T) = 0o(T*) = 0,(T) and o7.(T) = 0,(T)

and by [6, Theorem 2.10]

(2.6) o(T) = 0,(T) Umo(T*),

where 7o(+) denotes the set of all joint eigenvalues of finite multiplicity.
Thus applying Theorem 3 and Corollary 5 in [3] we have

wo(T)\ [0] = {or(T)° N ap(TH}\ (0]
(2.7) = {ore(T)* Nop(T)}\ [0]
= 7o(T) \ 0]
and
o2 (T)\ [0] = {o7(T) Uaccor(T)}\ [0]
(2.8) = {o7e(T) Uaccar(T)} \ [0]
= o} (T)\ [0].
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Also, from (2.7) we have

wo0(T) \ [0] = {o(T) Nisoor(T)} \ [0]

(2.9) = {mo(T) Nisoay(T)} \ [0]

= moo(T) \ [0].

Since from Theorem 3 in [13]

03 (T) = o7 (T) \ moo(T)

applying (2.8) and (2.9) we have

b (T)\ [0] = {or(T) \ woo(T)} \ [0].

Hence the proof completes ]
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