ON p-GROUPS OF ORDER p^4

KIM SEON OK

ABSTRACT. In this paper we will determine Schur multipliers of some finite p-groups of order p^4 .

1. Introduction

Let G be a finite group and let F be an algebraically closed field of characteristic zero with its multiplicative group $F^* = F - \{0\}$. A mapping $T: G \longrightarrow GL_n(F)$ of G into the general linear group $GL_n(F)$ is called a projective representation of G of degree n over F if

$$T(g)T(h) = \alpha(g, h)T(gh), \quad \alpha(g, h) \in F^*$$

holds for all $g, h \in G$. The function $\alpha: G \times G \longrightarrow F^*$ is called a factor set of G. Two factor sets α and β are called equivalent if there exists a function $c: G \longrightarrow F^*$ such that

$$\alpha(g, h) = \beta(g, h)c(g)c(h)c(gh)^{-1}$$

for all $g, h \in G$. This is an equivalence relation, and the equivalence class containing the factor set α will be denoted by $\{\alpha\}$. For any two factor sets α and β , let $\alpha\beta$ denote the function defined by

$$(\alpha\beta)(g, h) = \alpha(g, h)\beta(g, h), \quad g, h \in G.$$

Then $\alpha\beta$ is a factor set. If α^{-1} denotes the function for which

$$\alpha^{-1}(g, h) = \alpha(g, h)^{-1}, \quad g, h \in G,$$

then α^{-1} is also a factor set. The set M(G) of all equivalence classes of factor sets forms an abelian group under the multiplication defined by

$$\{\alpha\}\{\beta\} = \{\alpha\beta\}.$$

The identity element in M(G) is given by $\{1\}$ where 1 is the factor set $1(g, h) = 1, g, h \in G$; and for any $\{\alpha\} \in M(G)$, we have $\{\alpha\}^{-1} = \{\alpha\}$

Received May 30, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 20C25.

Key words and phrases: Schur multiplier.

206 Kim Seon Ok

 $\{\alpha^{-1}\}$. This group is called the *Schur multiplier* of G over F. In fact, M(G) is the second cohomology group $H^2(G, F^*)$, where F^* is a trivial G-module.

The purpose of this paper is to explicitly determine Schur multipliers of some finite p-groups.

2. Main results

Let G be a nonabelian p-group of order 2^4 . It is known that G is isomorphic to one of the nine groups(see [1], p. 145) and their Schur multipliers can be found in [6].

To show the main results, we begin with following (see [5], Theorem 4.6 and 4.8).

THEOREM 1. Let G be a finite nonabelian group with $|G:Z(G)| = p^3$. Then one of the following holds.

- (1) G/Z(G) is an elementary abelian group of order p^3 , and G' is an elementary abelian p-group with $\{1\} \neq G' \subseteq Z(G)$.
- (2) G/Z(G) is a nonabelian p-group of order p^3 , and we have

$$Z_2(G) = Z(G)G', \quad |Z_2(G):Z(G)| = p, \quad |G:Z_2(G)| = p^2.$$

THEOREM 2. Let G is a nonabelian p-group of order p^4 . Then one of the following holds.

- (1) $Z(G) = p^2$, |G'| = p, and $G' \subseteq Z(G)$.
- (2) Z(G) = p, $|G'| = p^2$, and $Z(G) \subseteq G'$.

We now determine Schur multipliers of nonabelian p-groups which satisfy the conditions in Theorem 2 (1). Actually, it is well-known that $|G| = p^4, |G'| = p$ and $G' \subseteq Z(G)$, then G is isomorphic to one of the following six groups(see [3], p. 346).

$$G_1 = \langle x, y \mid x^{p^3} = y^p = 1, \ x^y = x^{1+p^2} \rangle$$
 $G_2 = \langle x, y, z \mid x^p = y^p = z^{p^2} = 1, \ [x, z] = [y, z] = 1, \ [x, y] = z^p \rangle$
 $G_3 = \langle x, y \mid x^{p^2} = y^{p^2} = 1, \ x^y = x^{1+p} \rangle$
 $G_4 = M_p \times \langle w \rangle$, where
 $M_p = \langle x, y, z \mid x^p = y^p = z^p = 1, \ [x, z] = [y, z] = 1, \ [x, y] = z \rangle$,
 $\langle w \rangle = \langle w \mid w^p = 1 \rangle$
 $G_5 = \langle x, y, z \mid x^{p^2} = y^p = z^p = 1, \ [x, z] = [y, z] = 1, \ x^y = x^{1+p} \rangle$
 $G_6 = \langle x, y, z \mid x^{p^2} = y^p = z^p = 1, \ [x, y] = z, \ [x, z] = [y, z] = 1 \rangle$

THEOREM 3. Let p be an odd prime and let G be a nonabelian group of order p^4 such that |G'| = p, $G' \subseteq Z(G)$ and Z(G) is cyclic of order p^2 . And let M(G) be a Schur multiplier of G. Then one of the following holds.

- (1) $G = G_1$ and $M(G) \cong \{1\}$.
- (2) $G = G_2$ and $M(G) \cong C_p \times C_p$.

PROOF. (1) Since $\langle x \rangle \triangleleft G$ and $G/\langle x \rangle \cong C_p$, we have that G is metacyclic. Using the fact by reference[4, p. 289], we have

$$M(G)\cong C_n,$$

where $n = \frac{(1+p^2-1, p^3)\times l}{p^3} = 1$, $l = (1+(1+p^2)+(1+p^2)^2+\cdots+(1+p^2)^{p-1}, p^3) = p$. Thus it follows that

$$M(G) \cong \{1\}.$$

(2) Since $Z(G)=\langle z\rangle$ and $G/Z(G)\cong C_p\times C_p$, we have $M(G/Z(G))\cong C_p$. And we also have $G'\cap Z(G)\cong C_p$. Note that

$$G/G' = \langle xG' \rangle \times \langle yG' \rangle \times \langle zG' \rangle$$

$$\cong C_p \times C_p \times C_p.$$

It follows that $Z(G) \otimes G \cong C_p \times C_p \times C_p$. Consider the exact sequence

$$Z(G) \otimes G \longrightarrow M(G) \longrightarrow M(G/Z(G)) \longrightarrow G' \cap Z(G) \longrightarrow 1.$$

Then $M(G/Z(G)) \cong C_p$, $G' \cap Z(G) \cong C_p$ and hence we obtain the following map

$$Z(G) \otimes G \longrightarrow M(G) \longrightarrow 1.$$

Since $Z(G) \otimes G$ is an elementary abelian group of order p^3 , M(G) is an elementary abelian group of order at most p^3 . Since [x, y] =

 $z^p \in Z(G)$, we have $z^{p^2} = [x, y]^p = [x^p, y] = [1, y] = 1$. The relations $x^p = 1$ and $[x, y] = z^p$ imply $z^{p^2} = 1$. Thus G is generated by three elements and five defining relations. Let d(G) be the minimal number of generators of G. Then $5 \geq 3 + d(M(G))$, and hence $|M(G)| \leq p^2$. On the other hand, d(G) = 3 and we have

$$p^{\frac{3(3-1)}{2}} \leq |M(G)||G'| = |M(G)|p.$$

It follows that $|M(G)| \geq p^2$. Therefore $M(G) \cong C_p \times C_p$.

THEOREM 4. Let p be an odd prime and let G be a nonabelian group of order p^4 such that |G'| = p, $G' \subseteq Z(G)$ and Z(G) is elementary abelian of order p^2 . And let M(G) be a Schur multiplier of G. Then one of the following holds.

- (1) $G = G_3$ and $M(G) \cong C_p$.
- (2) $G = G_4$ and $M(G) \cong C_p \times C_p \times C_p \times C_p$.
- (3) $G = G_5$ and $M(G) \cong C_p \times C_p$.
- (4) $G = G_6$ and $M(G) \cong C_p \times C_p$.

PROOF. (1) It is similar to the proof of theorem 3 (1).

(2) Let $G = M_p \times \langle w \rangle$. It is easy to show that $M(M_p) \cong C_p \times C_p$. Since $M_p/M_p' = \langle xM_p' \rangle \times \langle yM_p' \rangle \cong C_p \times C_p$, we have

$$M_p \otimes \langle w \rangle = M_p / M_p' \otimes \langle w \rangle$$

 $\cong C_p \times C_p.$

Thus it follows that

$$M(G) \cong M(M_p)) \times M(\langle w \rangle) \times (M_p \otimes \langle w \rangle)$$

$$\cong C_p \times C_p \times C_p \times C_p.$$

(3) Let

$$G = \langle x, y, z \mid x^{p^2} = y^p = z^p = 1, |x, z| = [y, z] = 1, |x^y = x^{1+p}\rangle.$$

Then we have $G \cong K \times \langle z \rangle$, where $K = \langle x,y \mid x^{p^2} = y^p = 1, \ x^y = x^{1+p} \rangle$, and $\langle z \rangle = \langle z \mid z^p = 1 \rangle$. We can easily prove that $M(K) \cong \{1\}$. Since $K \otimes \langle z \rangle = K/K' \otimes \langle z \rangle \cong (C_p \times C_p) \otimes C_p \cong C_p \times C_p$, we have

$$M(G) \cong M(K) \times M(\langle z \rangle) \times (K \otimes \langle z \rangle)$$

 $\cong C_p \times C_p.$

(4) The proof can be found in the next theorem.

We know that the schur multiplier of a group G is related to central extensions of G. Also schur showed that for any finite group G there exists a finite central extension whose kernel is isomorphic to M(G) (see [2], Theorem 25.5). Such an extension is called a representation group for G.

THEOREM 5. Let p be an odd prime and let $G = G_6$. Then the following hold.

(1) G is a p-group of order p^4 and

$$G' = \langle z \rangle \cong C_p, \quad Z(G) = \langle x^p \rangle \times \langle z \rangle \cong C_p \times C_p,$$

 $G/G' \cong C_p \times C_{p^2}, \ G/Z(G) \cong C_p \times C_p.$

Set $u_1 = x^p$, $u_2 = z^{-1}$, $u_3 = y$. Then we have $G = \langle u_1, u_2, u_3, x \rangle$, where $\langle u_1, u_2, u_3 \rangle$ is elementary abelian of order p^3 and

$$x^p=u_1,\ u_1^x=u_1,\ u_2^x=u_1u_2,\ u_3^x=u_3.$$

(2) Let

$$G^* = \langle a, b, c | a^{p^3} = b^{p^2} = c^p = 1, [a, c] = a^{p^2}, [b, c] = b^p, [a, b] = c \rangle.$$

Then G^* is a representation group of G such that $G^*/\langle a^{p^2}, b^p \rangle \cong G$.

$$(3) \ M(G) \cong \langle a^{p^2}, b^p \rangle \cong C_p \times C_p.$$

PROOF. (1) It is easy to show that $z \in Z(G)$ and we have

$$(x^p)^y = (x^y)^p = (xz)^p = x^p z^p = x^p$$

and

$$(x^p)^z = (x^z)^p = x^p.$$

This implies that $x^p \in Z(G)$ and hence $Z(G) = \langle x^p, z \rangle = \langle x^p \rangle \times \langle z \rangle \triangleleft G$. It is easy to show that the subgroup $U = \langle x^p \rangle \times \langle z \rangle \times \langle y \rangle$ is an elementary abelian p-group of order p^3 . Since $y^x = yz^{-1}$, we have $U \triangleleft G$. So $G = U\langle x \rangle$, $U \cap \langle x \rangle = \langle x^p \rangle$, and it follows that $|G| = \frac{|U||\langle x \rangle|}{|U \cap \langle x \rangle|} = p^4$. Next, we wish to show that $G = \langle x, y, z \rangle = \langle u_1, u_2, u_3, x \rangle$. In fact,

$$u_1^x = u_1,$$

 $u_2^x = (z^{-1})^x = z^{-1} = u_2,$
 $u_3^x = y^x = yz^{-1} = z^{-1}y = u_2u_3.$

(2) The relation $c^{-1}ac=a^{1+p^2}$ implies that $c^{-k}ac^k=a^{(1+p^2)^k}=a^{1+p^2k}$. Thus we have

$$(a^p)^b = aa^{1+p^2(p-1)} \cdots a^{1+2p^2}a^{1+p^2}$$

= $a^pa^{p^2\frac{p(p-1)}{2}} = a^p$

and $(a^p)^c=(a^c)^p=(a^{1+p^2})^p=a^p$. It implies that $a^p\in Z(G^*)$. Similarly, we have $b^p\in Z(G^*)$ and therefore $\langle a^p,b^p\rangle\subseteq Z(G^*)$. Suppose that $Z(G^*)\neq \langle a^p,b^p\rangle$. Then $G^*/Z(G^*)$ is abelian and so $[G^*,G^*]\subseteq Z(G^*)$. But this is a contradition because $c\in [G^*,G^*]$, but $c\not\in Z(G^*)$. Thus we show that $Z(G^*)=\langle a^p,b^p\rangle$. And we have

$$[G^*, G^*] = \langle c, a^{p^2}, b^p \rangle = \langle c \rangle \times \langle a^{p^2} \rangle \times \langle b^p \rangle.$$

Set $Z = \langle a^{p^2}, b^p \rangle$. Then $Z \subseteq Z(G^*) \cap [G^*, G^*]$ and cleary $G^*/Z \cong G$. We consider the map

$$f: \operatorname{Hom}(Z, \mathbb{C}^*) \longrightarrow M(G^*/Z) \cong M(G).$$

Then we have $\operatorname{im} f \cong [G^*, G^*] \cap Z = Z \cong C_p \times C_p$ and so M(G) contains a subgroup isomorphic to Z.

(3) Since G is generated by 3 elements and 5 defining relations, we have

$$|M(G)| \le p^2.$$

Hence $M(G) \cong C_p \times C_p$.

References

- [1] W. Burnside, Theory of groups of finite order, 2nd, Dover, New York, 1955.
- [2] L. Dornhoff, Group representation theory Part A, Marcel Dekker, New York, 1971.
- [3] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1969.
- [4] G. Karpilovsky, Group representations II, North-Holland, Amsterdam-New York-Tokyo, 1993.
- [5] Yeon Jang Oh, Groups with irreducible representations of prime degree, Danguk University, Seoul, 1985.
- T. W. Sag and J. W. Wamsley, Minimal presentations for groups of order 2ⁿ(n ≤ 6),
 J. Austral. Math. Soc. 15 (1973), 461-469.

Department of Mathematics Sogang University

Seoul 121-742, Korea

E-mail: suno_kim@ yahoo.co.kr