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ON p-GROUPS OF ORDER p!

KiMm SEON OK

ABSTRACT. In this paper we will determine Schur multipliers of some
finite p-groups of order pl.

1. Introduction

Let G be a finite group and let F be an algebraically closed field
of characteristic zero with its multiplicative group F* = F — {0}. A
mapping T' : G — GL,{F) of G into the general linear group GL,(F')
is called a projective representation of G of degree n over F if

T(9)T(h) = alg, R)T(gh), olg, h) € F

holds for all g, h € G. The function o : G x G — F* is called a factor
set of G. Two factor sets o and 3 are called egquivalent if there exists a
function ¢ : G — F™ such that

alg, h) = B(g, h)e(g)e(h)e(gh)™!
for all g, h € (. This is an equivalence relation, and the equivalence

class containing the factor set o will be denoted by {a}. For any two
factor sets o and 3, let a3 denocte the function defined by

(aB)(g, h) = a(g, h}B(g, h), g, h€G.
Then af is a factor set. If a~! denotes the function for which
al(g, h) =alg, B)!, ¢, ke,

then o~ ! is also a factor set. The set M(G) of all equivalence classes of
factor sets forms an abelian group under the multiplication defined by

{a}{B} = {af}.
The identity element in M(G) is given by {1} where 1 is the factor set
1(g, k) = 1, g, h € G; and for any {a} € M(G), we have {a} ! =
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{a~1}. This group is called the Schur multiplier of G over F. In fact,
M (G) is the second cohomology group H?(G, F*), where F* is a trivial
G-module.

The purpose of this paper is to explicitly determine Schur multipliers
of some finite p-groups.

2. Main results

Let G be a nonabelian p-group of order 2*. It is known that G is
isomorphic to one of the nine groups(see [1], p.145) and their Schur
multipliers can be found in [6].

To show the main results, we begin with following(see [5], Theorem
4.6 and 4.8).

THEOREM 1. Let G be a finite nonabelian group with |G : Z(G)| =
p?. Then one of the following holds.

(1) G/Z(G) is an elementary abelian group of order p*, and G’ is an
elementary abelian p-group with {1} # G' C Z(G).

(2) G/Z(G) is a nonabelian p-group of order p°, and we have

Z)(G) = Z(G)G', |2:(G): Z2(G) =p, |G:Z:(G)|=p"

THEOREM 2. Let G is a nonabelian p-group of order p*. Then one
of the following holds.

(1) Z(G)=p*, |G'| = p, and G' C Z(G).

(2) Z(G) =p, IG'| =%, and Z(G) C G

We now determine Schur multipliers of nonabelian p-groups which
satisty the conditions'in Theorem 2 (1). Actually, it is well-known that
|G| = p, |G’ = p and &' C Z(G), then G is isomorphic to one of the
following six groups(see [3], p. 346).
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Cr={myla” =y’ =1, a¥ =27
Gy = {w,y,z|2? =4° =7 = 1, [z, 2] =(y, 2] =1, [z, 3] =27}
Gy = (z,y]a” =y =1, a¥ =)
Gs = My x {w), where
M,={z,y,ziaP=y*=2"=1, [z, 2] =y, 2] =1, [z, y] = 2},
(w) = (w|w? =1)
Gs = (z,y,2| 2" =y =" =1, [z, 2l =[y, 2] =1, a¥ = ! +P)
Go=(zyza” =y =2 =1, [, =2 [5,2) = [y, 2] = 1)
THEOREM 3. Let p be an odd prime and let G be a nonabelian group
of order p* such that |G'| =p, G' C Z{G) and Z(G) is cyclic of order

p?. And let M(G) be a Schur multiplier of G. Then one of the following
holds.

(1) G = G| and M(G) = {1}.
(2) G = Gy and M(G) 2 C, x C,.

PROOF. (1) Since (z) < G and G/{x) = C), we have that G is
metacyclic. Using the fact by reference[d, p. 289], we have

M(G) % Cy,
where n = ﬁiﬁ;gm =1L,I=0104+00+pP)+ 0+ + -+ 1+
)P, p) = p. Thus it follows that
M(G) = {1}.
(2) Since Z(G) = (z) and G/Z(G) = Cp x C, we have M (G/Z(G)) =
Cp. And we also have G’ N Z(G) = C,. Note that
G/G = (G x (yG') x (zG")
=0y x Cp x Cp.

It follows that Z(G) ® G = C}, x Cp x Cp. Consider the exact sequence
Z(G)® G — M(G) — M(G/Z(G)) — G'nZ(G) — 1.
Then M(G/Z(G)) = Cp, G'N Z(G) = C, and hence we obtain the

following map
ZGY® G — M(G) — 1.

Since Z(G) ® G is an elementary abelian group of order P, M(G)
_is an elementary abelian group of order at most p. Since [z, y] =
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2P € Z(G), we have 2’ = [z, y|F = [2P, y] = [1, y| = 1. The relations
zP = 1and [z, y] = 2P imply 2 = 1. Thus G is generated by three
elements and five defining relations. Let d(G) be the minimal number
of generators of G. Then 5 > 3+ d(M(G)), and hence |M(G)| < p*. On
the other hand, d{G) = 3 and we have

3(3-1) ,
p 7 < MGG = [M(G)ip.
It follows that |M(G)| > p®. Therefore M(G) = C, x C,. O

THEOREM 4. Let p be an odd prime and leét G be a nonabelian group
of order p* such that |G| = p, G' C Z(G) and Z(G) is elementary
abelian of order p*. And let M{G) be a Schur multiplier of G. Then one
of the following holds.

(1) G =G and M(G) = C,,.

(2) G =Gy and M{G) = Cp x Cp x Cp x Cp.
(3) G =G5 and M(G) = Cp x Cp.

(4) G = Gg and M(G) = Cp, x C).

PRrROOF. (1) It is similar to the proof of theorem 3 (1).
(2) Let G = M, x (w). It is easy to show that M(M,) = C, x C,.
Since Mp/M,, = (zM}) x (yM}) = C, x Cp, we have
My ® (w) = Mp/ M, & {w)
=0y x Cp.
Thus it follows that
M(G) = M(Mp)) x M({w)} x (Mp ® (w))
= (Cp x Cp X Cp x G
(3) Let
G={(z,y,2|a" =y =2"=1, [g, 2] = [y, 2] = 1, 2¥ = 2"7).

Then we have G = K x {z), where K = (z,y|z¥" =P = 1, 2V = z1*P),
and {(z) = {(z]2P = 1). We can easily prove that M(K) = {1}. Since
K®{z) = K/K'® (z) 2 (Cy x Cp) ® Cp = C,, x Cp, we have
M(G) = M(K) x M({z)} x (K ® (z))
= Cp x O

(4) The proof can be found in the next theorem. O
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We know that the schur multiplier of a group G is related to central
extensions of G. Also schur showed that for any finite group G there
exists a finite central extension whose kernel is isomorphic to M (G)(see
[2], Theorem 25.5). Such an extension is called a representation group

for GG,

THEOREM 5. Let p be an odd prime and let G = Gg. Then the
following hold.
(1) G is a p-group of order p* and
G = (2)2Cpy Z(G) = (@) x (2) = Gy x Cp,
G/G' = Cy % Cp, G/Z(G) = Cy x C.
Set u; = zP, ug = z~!, uz = y. Then we have G = (u1, uy, u3, T,
where {(uy, ug, u3) is elementary abelian of order p% and
¥ =y, uf = w1, Ui = wiuy, U5 = uz.
(2) Let
G' = {crz,b,clap3 = =1, la, c] = apz, (b, ¢] = &, [a, bl = c).

Then G* is a representation group of G such that G* / (a? bP) = G,
(3) M(C) = (a?', V) = Cp x C.

ProoF. (1) It is easy to show that z € Z(G) and we have
(zP) = (2¥) = (z2)f = 2P2P = &P

and
(@) = (@) = o
This implies that 2P € Z(G) and hence Z(G) = (2P, z) = (2P) x {z)<G. It

is easy to show that the subgroup U = {xF) x {z} x {y) is an elementary

abelian p-group of order p°. Since y® = yz~!, we have U < G. So
G = Ulz), UN (z) = (zP), and it follows that |G| = —”&EEZH = pt.

Next, we wish to show that G = {z,y,2) = (w1, u2, u3, z}. In fact,

T _
Uy = up,
=W =2 =uy,
uf =y =y~ =27y = ugus.
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(2) The relation ¢~ lac = o' implies that ¢ Fact — o(1+7") =
al*7* . Thus we have
pyb o 1+pt(p—1) 14207 14p?
(@?)’ = aa a g

p{p—1)
— apapz T =gF

and (af)¢ = (a)P = (a”pz)P = @, It implies that ? € Z(G*). Simi-
larly, we have B € Z(G*) and therefore {a?, b*) C Z(G"). Suppose that
Z(G*) # (a*,b"). Then G*/Z(G*) is abelian and so [G*,G*] C Z(G*).
But this is a contradition because ¢ € [G*,G*], but ¢ & Z(G*). Thus we
show that Z(G*) = (a”,b"). And we have

(G*,G"] = (e, ", ) = (c) x (@) x ().

Set Z = (a”,b"). Then Z C Z(G*)N[G",G*| and cleary G*/Z = G. We
consider the map

f i Hom(Z, C") — M(G"/Z) 2 M(G).

Then we have imf = [G",G*|NZ = Z = C}, x C, and so M(G) contains
a subgroup isomorphic to Z.
(3) Since G is generated by 3 elements and 5 defining relations, we
have
|M(G)| < p*.
Hence M(G) = Cy, x Cp. O
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