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CONFORMAL DENSITY OF VISIBILITY MANIFOLD
Hyun Jung KM

ABSTRACT. In this paper, we prove the existence and uniqueness of a
§{I")-conformal density on the limit set of I' acting on visibility mani-
fold H for a Fuchsian group I'.

1. Introduction

Let H be an n-dimensional complete simply connected Riemannian man-
ifold without conjugate points and T is a discrete group of isometries on H,
which acts on H freely and properly discontinuously. It is well known that
H is diffeomorphic to an open disc D™ and the boundary of H at infinity
is homeomorphic to a sphere S7.

‘When we look at an orbit 'z of ' in & and think of each orbit point and
H as a star and a sky respectively, we can see a something like a galaxy at
infinity of the sky, which is called a limit set of I" and is denoted by L(T).
It is an interesting topic for geometers to get the information about the
geometry of the quotient manifold M = H/I' by looking at this set L(I").
To do this, it has been an important work to present a class of measures
on L(T'}, which has been developed by Patterson, Sullivan and others.

In [9], Patterson constructs a class of measures on L(T") on 2-dimensional
manifold with a constant curvature —1. And Patterson showed the unique-
ness of the measures using ergodic theory. His construction was extended
by Sullivan to the case that the sectional curvature of H is constant —1 in
all dimensions in [11]. The measure constructed by Patterson and Sullivan
is called Patterson-Sullivan measure. Moreover, Sullivan introduced
the conformal density that generalized the Patterson-Sullivan measure and
showed many results related to Hausdorff dimension of the Limit set and
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estimates on the orbital counting function. In [12], Yue performed the same
construction on the manifold with strictly negative curvature. Using the
general notation on a Riemannian manifold, Yue showed that the Patterson
Sullivan measure on his manifold was a conformal density related to the
Busemann function. And Yue extend the Sullivan’s results to the manifold
with strictly negative curvature.

In this paper, the author extend some of Sullivan’s results to the more
general class of hyperbolic manifolds. One of the most important properties
of the Hyperbolic Manifold with the curvature —1 is that any two points
z and y in H is joined by a geodesic line y. Eberlein defined a manifold
with this property, called visibility mamnifold, and he proved many results
in [4] and [5]. Of course, a manifold with strictly negative curvature is a
visibility manifold. We follow the notations in [4] and [5].

It is said that H satisfies the visibility axiom if H has the following
property;

for every point p € H and every real nurnber € > 0, there is R = R(p,€) >
0 such that if v : [a,b] — H s a geodesic segment with d(p,v) > R,
then Zy(v) < € where d(p,v) = Wf{d{p,v(¥))|{t € R} and Lp{v) =
sup{ Zp(v(t),7(s)) ¢, s € R }.

Roughly speaking, visibility axiom means that geodesic far away look
small. The visibility axiom is equivalent that for any two points x and y in
OH there exists a geodesic line between x and y [1]. This definition means
that the geodesic lines between x and y may be more one. If there are one
more geodesic lines between z and y, two geodesic lines between = and y
bounds a flat strip. H may be allowed some parts with the curvature 0.
The uniform visibility axiom on H is to choose a constant R = R{e)
independent of p € H in the definition of visibility axiom. Then H can get
only some flat strip not a flat half plane.

DEFINITION 1.1. Suppose M is a complete Riemannian manifold with-
out any conjugate points. If the universal cover I of M satisfies the uniform
visibility axiom, we call M a visibility manifold.

We want to note that a visibility manifold M has no assumption about
a curvature.

Suppose H satisfies the uniform visibility axiom. For any point z in H,
consider the orbit I'z of 2 and its closure Tz. The limit set of I is defined by
L(I') = Tz N8H. We can consider that T is a set of a isometry on H. Then
we extend the [-action on H to H = H U JH and we can get a T-action
on OH.
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REMARK 1.2. ([5])

(1) (the topological trichotomy) One of the following possibilities must
ocCur ;

(i) L{I) is a singleton, (ii) L{I') consists of two points  (iii) L(I") is
infinite.

(2) If L(T') is infinite, a set of fixed points of hyperbolic elements in I"
is dense in L(I') '

(3) If L{T") is infinite, the T'-orbit of is dense in L(T').

(4) If L(T") is infinite, L(T') is a perfect subset of 8H. Either L(T') = 0H
or L(T') is nowhere dense in 90H.

T is called Fuchsian if its limit set satisfies (iii) of (1), that is, L(T') is
infinite. From now on we always assume I" to be a Fuchsian group through
our paper. We define a set in L(T"), that is extremely useful when studying
the properties of measure on L(I"). The radial limit set L (T") is the set of
all n € L{T") such that any geodesic ray joining x € H and 7 intersects
some e-neighborhood of I'z infinitely many times. Obviously L7(I') is non
empty and hence it is dense in L(T") by Remark 1.2.

Let z,y € H and % € ¢H. Busemann function p, 4 : H — R is defined
by

pm,?f)(y) = tllglo(c(t) - d(y: C(i))),

where ¢ is a geodesic from z to ¥ and d{.,.) is the Riemannian metric.

DeFINITION 1.3. Let o > 0. A family of finite Borel measures {c }zen
on 0H is called an a-conformal density if {0, }.cy satisfies the followings;

(1) o is supported on the limit set of I’

(2) for z,2’ € H, 04,0, are absolutely continuous with respect to each
other and the Radon-Nikodym derivative satisfies

[d%] (1) = exp(—apxu(z))

dO’x-'
(3) Y0z = Ou(a), for y €T

In Section 2 we construct a conformal density on our visibility manifold
and showed when a conformal density is unique. The construction is the
same as that of Patterson’s. When Sullivan and Yue proved the properties
including the uniqueness of the conformal density, they used the property
of the curvature in their manifold strongly. So the author modified the
method without using any curvature property.
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2. Conformal density

In order to get a conformal density on H we generalize Patterson’s con-
struction. He has constructed a conformal density for any Fuchsian group
I' acting on a negatively curved surface. For positive real number s and
two fixed points z,y in H, we consider the Poincare series

9s(z,y) = Y e,

yel

where d(z,~y) is the hyperbolic distance in H [9], [11], [12]. Then there is
a positive number (I") such that g;(x,y) diverges for s < §(T") and g.(z, y)
converges for s > §(I'}). Using the triangle inequality, it is easy to see that
e=5UEW g (y,y) € gs(z,y) < @V g (y,y), which implies that §() is
independent of the choice of z,y € H.

Consider the family of measures

8 1 —ad(z,7y)
e = E e T, . s >8I,
9:(¥:9) =, " )

where §,, is the Dirac mass at vy. Thus {sf}s=s(r) is a family of finite
measures with uniformly bounded total mass. Let u, = lim,_ )4 45 be
a weak limit in the space of uniformly bounded measures on H UJH. Note
that g is concentrated on L(T") for s > 8(I"). When at s = §(I") pf diverges,
I" is of divergence type. Otherwise, I' is of convergence type. We assume
that T is of divergence type. Then ., is concentrated on L(I"). Without
this restriction, we can construct the conformal density by adding a slowly
increasing weight as in [9]. From the construction, it is easy to see that
for any other point &’ € H the limit lim,_,5ry4 p5 = pier also exists and
moreover the Radon-Nikodym derivative at £ € L(T") satisfies

dum’ _ —5(1—‘\,03:.‘5{"1“’)
. (¥) =e '

The proof of the following theorem is similar to that in [12]. But we describe
the proof in detail.

THEOREM 2.1. For any Fuchsian group T, 6(I") > 0, and there exists a
§(T)-conformal density.
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Proof. First, we show the existence of 6(I')-conformal density. Since we
showed that {iu,} satisfies (1) and (2) in the Definition 1.3, it is sufficient
only to show that

for all V e I
Let E be a Borel measurable subset in H and s > §(T').

1

Vi (B) = ua(V(E) = )

Z e td@) ly(g)(vy),
yel

where 15 is the characteristic function on E. Set n = V~lv and note that
v(y) € V(E) if and only if V—14(y) € E. As v runs over I, 5 also runs over
I" and we have

1 R
#(V(E)) = D e VT mmy oy (ny) = py-10,4(E).
el

9s (1, 9) ‘

Then {p}ren is a §(I')-conformal density.

Next, we show that 6(I') > 0. If the critical exponent §(I') = 0 then for
all z,#" € H, tz = py. The above (2.1) implies that for every Borel set
E CcO0H and every v € T, p.(E) = p . (v(E)). So pg is a finite I-invariant
measure on the limit set. Let £ be a Borel measurable set in H(cc) with
positive measure. Since I is Fuchsian, we can suppose that F has two
distinct points, say 1, € L(I'), which are fixed by hyperbolic isometries in
I'. Let 1,72 be hyperbolic isometries in T fixing n, £, respectively. Then we
can choose a integer n > 0 such that 47 (E) and +}(F) are disjoint subset
of E [4]. Then we have

pa(E) 2 pra (7 (E)) + 1 (72 (E)) = 2u2(E) > 0,

which is a contradiction. O]

The weak limit in Patterson’s construction is by no means unique. The
following statement means that uniqueness is closely related to ergodic
theory. The proof is in [12].
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THEOREM 2.2. Let {u;}.cy be any a-conformal density of I'. Then
any other a-conformal density {v;}zen coincides with p up to a scalar
multiplication if and only if the 1" action on 0H is ergodic with respect to
the measure class defined by p.

We consider when the conformal density is unique. Using the theorem
2.2, it is sufficient when the I" action on 8H is ergodic with respect to the
measure class {p. }.

Fix a point ¢ € H. Forany z in H and d > 0, consider the shadow of
the ball B(z,d) from z, to 0H defined by

Oﬂ?n(xﬁd) = {7? € 8H|C$U=‘J’7 ﬂB(.’L‘,d) :/: 0}1

where B(zg,d) is a geodesic ball with a center zy and a radius d and ¢z, 4
is the geodesic ray from zg to 1. In [11], Sullivan proved the following
Theorem 2.3, which is called the Sullivan’s shadow lemma. This theorem
has given much useful information on the local structure of a conformal
density. We prove Theorem 2.3 by using only the uniform visibility axiom.

THEOREM 2.3. Let {{tx }zem be a-a-conformal density of ' and zg € H.
Suppose p,, does not consist of a single atom. Then there is C) > 1 and
by > 0 such that for all b > by and

1

C;le_ad(z°’7—1m°) < . (Owo (7—1$0,b)) < Cle—ad(:cg,'y_ x0)+2ba-

Proof. Let mg be the largest mass of atoms with respect to p.,. Let
A= p, (0H). Since u,, does not consist of a single atom, we can choose
m > 0 such that mg < m < A. By the definition of m, there is § > 0 such
that for all set D C 8H with a angle at z( less than 4, p,, (D) <m.

Let v+ € ' be a isometry in H. Choose two points £, € 7(81‘.”4' —
Ogy{v tz0,b)) = M ~ ¥(Oyo (¥ '20,b). Then we have v71&,v7 !y €
OM — O (v 1z, b). Let gy and g be geodesic Tays from yzg to £ and 7,
respectively. Then v~ lg;,¥ g, are geodesic rays from zg to vy, v 1n,
respectively. Therefore d(v 1g1,7 'z} = b and d(y g2, v 120) = b.

By the definition of visibility axiom, there exists by > 0 such that for
all geodesic ¢ : R — H with d(zg,¢) > b, then Z;(c) < . Let b > by
be chosen. Since d(y g1, v 'zo) > b and d{y 'g2,v 'z0) > b, we have
Zeo(¥20,€) < 2 and Ly, (yxo,m) < %. Then we get for all £, € OM —

2
V(OID ('7_1530: b)1

4-’50 (5,77) < [émo(’}’ﬂ:g, 6) + éfzo(’yxo, 'I])] < 4.
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And 4,;0(8!\2'—7((9% (v txg,b)) < 4 and thz ((‘)M—’y(OIO (v lzg,0)) < m.
Therefore we get

(2:2) A =M < ay (¥(Oz (720, b)) < A,

On the other hand, The definition (3)§nd (2) of a-conformal density of
[ says that

Hzp ('Y(O-’Eo (7#1330: b)) = Hoy-1gy (Orm (7_13:0: b))a

and

By the definition of Busemann function p, (., and the uniform visibility
axiom of H, we get

d(z0,7"'%0) = 2b < py-15g,n(z0) < d(wo, ¥ w0)-

Therefore we get

e—ad(mg,—y_l:zn) < Mzu(0w0(7_1$05b)) < e—ad(mo,7_1w0)+2ba
- ;‘.6.7-1%(0%(’](“1:50,5)) -

This inequality and (2.2) implies our theorem. ' O

We can explain the radial limit set in H in the relation with the shadow
of O, (x,d} of a ball B(z,d) from z¢. { € 8H is a radial limit point if and
only if for some ¢ > 0 and z € H, ( belongs to infinitely many shadows
O, (vz,c), for v € T. We denote L"(T") the radial limit set. As we show the
below properties of conformal density, the measurement of the radial limit
set 18 important for them.

THEOREM 2.4. Let u be a a-conformal density of T' and let = be any
point in H. If Y ¢ e~d@77'%) < oo, then pL(L7(I)) = 0.

Proof. Since I is a Fuchsian group, we can let I' = {7y, }ren. For given

€ > 0, there exists N > 0 such that Y. ., e~®4=7: %) < ¢, By Theorem
2.3, we have a constant by > 0 and Cy > 0 such that for 4 > b,

Z 12(Oz (75 ' 7, b)) < Cre ooy et 2ha < oy elba,
n>N
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But for 0 < b < bo we also have

3 be(Oa(92,0) € Y pal(Oa (7 2, b)) < CrePoe.

n>N n>N

By Borel-Cantelli Lemma, we have p;[Nn>1 Unsn Oz(7, 12, b)) = 0, for
all b > 0. Since L™(T") = Ub>0[ﬂN21 Upsn Ow(’y;lﬂ?,b)], we prove

1 (LT (D)) = e (UpsolNvs1 Uns v Ox(7, '3, b)) = 0. O

Now, we show that a radial limit point can never be a atom with point
mass.

LEMMA 2.5. A radial limit point { € L"(T") cannot be the atom of any
a-conformal density p of T'.

Proof. Assume that n € 9H is a radial limit point and a atom. There
exists a strictly increasing sequence {v;} in I' and z € H so that lim

i—o0
e=P=m:(1%) = 0o, Consider the stabilizer T, = {v € G|v(n) = n} of 7.
Then an argument that is similar to that in the proof in Theorem 2.1
shows that I'; has no hyperbolic element.
First, suppose that I';, has no parabolic element. Then 7 is not parabolic.
Then I' is composed of entirely elliptic elements, thus has finite order. Since
I is a torsion free, I'; has only the identity element. Then we have

3 et = Zmn('y n o #(OH)

ver ver ()

This is a contradiction.

Next, suppose that 7 is a parabolic, then the stabilizer I'; of n preserves
all horospheres centered at 7. Then the sequence {v;} contains no two
elements from the same coset of I'/T,,.

3 emerantn = pely ')  p2(OH)
e o Haln) )
which is a contradiction. O

THEOREM 2.6. Let it be an a-conformal density of . If A is a T'-
invariant subset of L' (T'). Then either p(A) =0 or pz(A) = p,(0H).
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Proof. Suppose p;(A) > 0. Then p-almost all £ € A is a density point.
There exist by > 0 and {v, 'z} converging to £ radially such that for all
b > by

-1
R L
n—oo  p(Oy(yn z,b))

Let mq be the largest point mass of p,. Using the similar argument to
the proof in Theorem 2.3, for given ¢ > 0 and for sufficiently large n and
sufficiently large b > 0, we have

pe(OH — Oy 2(2,0)) = 1z (OH) — (O, x(2,8)) <mo + e
Since ftz(Os0(2,5)) = hioaa(Ou (7, b)), we have
b (O (02, 8)) 2 12(OH) — g — .
Furthermore we get

fhz1,(0z (75 12, 0) N A)

g5 (Os (v ', B))

Jootite—a L,
Jo,tvatan) 151

=1

- .
_ fOz('rﬁlw,b)uAﬁ Pz (T Frdy,

—1 1 .
—0pzy(fn w)d#ﬁ

fom (1n tz.0) €

Note that for all 17, € O, (7, 1%, b), we can get some constant C' > 0 such
that

—C S oy T Pty S C.

Therefore we have

fy=1,(Oz (v tz, b) N A)
jy 14 (Oa (v ' 2, b))

Sl _ 620 « ﬂx(ow('ﬁ:lfib) - A)
,Uum(ozc(')/ﬂ :I?,b))

Sl_ei

for sufficiently large n.
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We get for all € > 0,
MI(A) > Mw(o"fnw(ma b) N A)
< (1 pyz1,(0: (7 2, b))
(2.3) = (1 - €)[(kx(0H)) —mg — €.

If i, has any atom, it has at least two since T’ is non elementary, and
(2.3) implies A must have a atom, which is a contradiction to Lemma 2.5,
that is, A C L"(T") has no atom. a

By Theorem 2.6, we can say that I' is ergodic on JH with respect to
the conformal measure class. Note that [ is ergodic on H with respect to
the conformal measure p if any invariant Borel set A C 8H under T' then
for all z € H either uz{A) =0 or u,(A°) =0 forall x € H.

If x,y € H and r > 0, the orbital counting function N(r,x,y) can be
defined by

_ N(rnzy)=#{yeTl|dzv) <r}
Using the Lemma 2.3, we can control the orbital counting function. And

Lemma 2.7 play a important role to prove the uniqueness of conformal
density, that is, we have only §(I')-conformal density.

LEMMA 2.7. For any x € H and v € T, there exists a constant C =
C(z) > 0 and ro > 0 so that N(r,z,vx) < Ce®1)" for all r > rg.

Proof. Let Ty = {y € Tlk — 1 < d{z,y~'z) < k} and Sy = #I' for all
integers k > 0. Then we have that for any n > 0, N(n,z) < 51+ - + S,.
First, we have to show that there exists Cp = Ca(z) > 0 such that for all
nedM,

) #{’YEPH’?EOz(’Y_l-’E,do)} < Gy,
where dg is the constant in Theorem 2.3. That is why this means that
{0:(y1z,do) | v € Tk } covers Uyer, Oz (v~ 1w, do) at most Cy-times.

For all € OH we choose 71,72 € Tt so that 5 € Oy (v 'z,dg) N
O (v; 'z, dp). Choose a geodesic ray ¢ from z to 1. By the definition of
O, (v 'z,dy), there are two real numbers ¢y, ¢, > 0 such that d(c(t1 ), 77 ') <
dg and d(c(ts),¥; ') < dy. Then for i = 1,2, we have

d(v7 tx, z) - dle(t:), v te) < dle(t:), z) < d{v; e, x) + dlc(t:), v ).

Since 1 and v, are in 'y, we can get £ — 1 < d(a:,:yt-_lm) <k fori=1,2.
And k—1—dy < d(z,c(t;)) < k + do. Since c(t;) lies on the ray between z
and 17, we have

(2.4) d{c(ty), clta)) < |d(c(tr), z) — d(c(ta), z)| < 2do + 1.
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Therefore (2.4} implies
d(vi 'm vyt 2) < [ he, elta)) Hdle(ty), elta)) +dlc(te), v, ' 2) ] < ddo+1.

Since T' acts on H properly discontinuously, we can get a constant Cs(z) =
Ca > 0 independent, of v such that {v; € Tylyiz € B(y '@, 4dy+1)} < C.
Therefore we have

#{v e Tiln € O (v x,do)} < Co.
Note that for any integer n > 0, N(n,z) < Sy + -+ + Sp. For all 1 <
k <n, we get

Skol-—lefﬂl")d(w,'y‘

1

<Y (0o, do))

+€ly
< Capig(Uyer, Ox (v 12, do))
(2.5) < CZJufz(aH):
where ) > 0 is the constant in Theorem 2.3. And we can get S;p <
C1Copz(0H)e’ % by (2.5), which complete our theorem. ]

Lemma 2.7 and the proof modified a theorem in [2]. Coornaert proved
a theorem like Lemma 2.7 on a tree.

COROLLARY 2.8. Suppose that there exists a-conformal density of Fuch-
sian group I' with p (L"(I')) > 0. Then

(1) a(L7(T)) = i (OH)

(2) a =§T)

(3) p is the unique §(T')-conformal density of T and I is ergodic on H
with respect to p.

(4) T is a divergent type.

Proof. (1) It is clear by Theorem 2.6.

(2) By Theorem 2.4 and p.(L"(T')) >0, > . cp e~ =%) = o9, we know
that a < 4(T). On the other hand, Lemma 2.7 implies there exists ry such
that for all r > ry, N(r,z) < C, where (' is depending only on I" and r in
Lemma 2.7. Then for all 5 > «,

R
S etmre) = fim [ eTdN(t, )
vel f=reo Jo

R
= lim [N(R,z)e *8 +3/ e S N(t,x)dt]
0

R—co

R—co

R
< lim [Cyefem®) s f et@=2) gf]
0

< oC,
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Therefore, we can get s > 4(F).
{3) That follows from Theorem 2.2 and Theorem 2.6.
(4) That follows from Theorem 2.5. O
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