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FIXED POINT THEOREMS OF QUASICOMPACT
MULTIVALUED MAPPINGS IN GENERAL
TOPOLOGICAL VECTOR SPACES

In-Sook Kim

ABSTRACT. Using the notions of admissibility, local convexity and
measure of noncompactness, we give new fixed point theorems for qua-
sicompact or condensing multivalued mappings with domains that are
not necessarily convex subsets of an arbitrary topological vector space.

1. Introduction

In the past forty years, the fixed point theory in not necessarily locally
convex topological vector spaces is intensively developed by many authors,
see [1-5,7,10-15).

0. Hadzi¢ [4] gave some properties of measures of noncompactness in
paranormed spaces and fixed point theorems for condensing multivalued
mappings in general topological vector spaces. S. Hahn [11] extended
Schauder’s fixed point theorem to noncompact multivalued mappings with
nonconvex domains in a topological vector space. See also [9].

The purpose in this paper is to obtain new fixed point theorems for
guasicompact or condensing multivalued mappings with domains that are
not necessarily convex subsets of an arbitrary topological vector space,
where the concepts of admissible and locally convex sets play a fundamental
role.

The proof of the main fixed point theorem for quasicompact mappings
is based on the related result for compact mappings due to T. Jerofsky
[13]. Moreover, we show that the fixed point theorem for quasicompact
mappings is applied to obtain the related result for condensing mappings
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by introducing the notion of y-measure of noncompactness in a topological
vector space, see [4].

In Section 2, we prove the Leray-Schauder fixed point theorem for quasi-
compact multivalued mappings with closed convex values in general topo-
logical vector spaces. In Section 3, the Schauder fixed point theorem for
noncompact multivalued mappings with not necessarily convex domains in
a topological vector space is presented.

In this papér\ all topological vector spaces are assumed to be real and
Hausdorff. Let K.be a subset of a topological vector space £. The closure,
the convex hull, and. the closed convex hull of K in F are denoted by K,
co K, and @ K, respectively. If U is a subset of K, then the boundary of
U with respect to the relative topology on K is denoted by OxU.

Further, we denote the collection of all nonempty, closed and convex
subsets of K by ¢(K), and the collection of all finite unions of closed and
convex subsets of E by uc(E).

Let £ be a topological vector space, U and K subsets of £. A (multi-
valued) mapping F : U — ¢(K) is said to be upper semicontinuous on U if
for any open subset V of K, theset {z e U: F(z) C V}isopenin U. F
is said to be compact if its range F(U) is relatively compact.

A mapping F : U — ¢(K) is said to be quasicompact if there exists a
closed convex subset S of E with the property that UNS # @, F(UNS) C $
and F(U N S) is relatively compact. Such a set S is called e characteristic
set for F. See {9,11].

Let E be a topological vector space, K a nonempty subset of I, and ¥
a collection of subsets of €@ K with the property that for any M € ¥, the
sets M,coM, M U {u}{u € K) and every subset of M belong to ¥.

Let A be a partially ordered set with the partial ordering <, and ¢ a
function from A into itself. A function v : ¥ — A is said to be a ¢-measure
of noncompactness on K if the following conditions are satisfied for any
M e T

(1) (M) =~v(M);

(2) if u € K, then v(M U {u}) = v(M);

(3) if N C M, then v(N) < (M) (monotone);

(4) v(coM) < p(y(M)).

if the following condition is required instead of (4)
y(coM) < ~v(M)

then « is called a measure of noncompactness on K. See {4].
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Let I and K he subsets of F such that U C K, and v a yp-measure
of noncompactness on K. A mapping F : U - ¢(K) is said to be {7, ¢)-
condensing if for every N C U, the inequality v(N) < @o(y(F(N))) implies
that F(N} is relatively compact. In particular, if ¢ is the identity map,
then F' is called v-condensing. See [8].

A ponempty subset X of a topological vector space E is said to be
admissible in the sense of Klee [14] provided that, for every compact subset
K of X and every neighborhood V of the origin 0 in E, there exists a
continuous function h : K — X such that  — h(z) € V for all z € K and
h{K) is contained in a finite dimensional subspace L of E. See [12].

It is known that every nonempty convex subset of a locally convex topo-
logical vector space is admissible.

A subset K of a topological vector space  is said to be locally conver if
for every & € K there exists a base of neighborhoods U(z) of z in K such
that U(z) = W(z) N K and W (z) is a convex subset of E. See [10,15].

Every subset of a locally convex topological vector space is a locally
convex set. Every subset of a locally convex set in a topological vector
space is locally convex.

2. The Leray-Schauder fixed point theorem for quasicompact
mappings

Using the concepts of admissibility and local convexity, we give new fixed
point theorems for quasicompact multivalued mappings with the Leray-
Schauder boundary condition in general topological vector spaces. As ap-
plications, the existence of fixed point for condensing mappings is guaran-
teed.

We begin with the following result which can be found in [13, Folgerung
4.3.5].

LEMMA 2.1. Let E be a topological vector space, and K an admissible
subset of E with K € uc(E) such that K is starshaped with respect to
uw € K. Let Y < K bean in K closed neighborhood of u. Let F': Y — ¢(K}
be a compact upper semicontinuous mapping. If z & tF(z) + (1 — t)u for
every ¢ € Y and t € (0,1), then F has a fixed point.

THECREM 2.2. Let E be a topological vector space, K starshaped with
respect tou € K with K € uc(¥), and U C K an in K closed neighborhood
of u. Let F : U — ¢(K) be a quasicompact upper semicontintious mapping
with a characteristic set S containing u such that K N S is admissible and
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x & tF(x) + (1 — t)u for every « € OxU and t € (0,1). Then there exists a
point x € U such that ¢ & F(x).

Proof. By hypotheses, § is a closed and convex subset of E,u € U N
S, F(UNS) C S and F(UNS) is relatively compact. Let ¥ := U N S and
Ky:=KnN&. Then Y is an in Ky closed neighborhood of u, and K is
admissible, starshaped with respect to v and g € uc(E) because S is a
closed and convex subset of E containing v and K ¢ uc(F).

Let Fy := Fly : Y — ¢(Ky) be the restriction of F to Y. Then Fy
has nonempty, closed and convex values in K; since Fo(y) = F(y) NS and
F(y) € ¢(K) for each y € Y. Moreover, it is clear that Fy is a compact
upper semicontinuous mapping. Since dx,Y C Ox U, we have z & tFo{z)+
(1 — t)u for every = € Ox,Y and ¢t € (0,1). By Lemma 2.1, there exists a
point 2 € Y(C U) such that z € Fp(z) = F(x). This completes the proof.
O

The following result is an immediate consequence of Theorem 2.2.

THEOREM 2.3. Let £ be a topological vector space, K a closed and
convex subset of E, and U C K an in K closed neighborhood of w. Let
F : U — ¢(K) be a quasicompact upper semicontinuous mapping with a
characteristic set S containing u such that K N S is admissible and = ¢
tF(z} + (1 — t)u for every z € OxU and t ¢ (0,1). Then F has a fixed
point.

COROLLARY 2.4 [6, SATZ 2]. Let E be a locally convex topological
vector space, K a closed and convex subset of E with 0 € K, and W a
closed neighborhood of 0 in E. Let F : WNK — ¢(E) be a compact upper
semicontinuous mapping with F(W N K) C K such that Sz ¢ F(z) for
every x € OgW N K and 8 > 1. Then F has a fixed point.

Proof. This result follows from Theorem 2.3 because every nonempty
convex subset of a locally convex topological vector space is admissible.
D . .

The following fact which gives the relation between admissible and local
convex sets is useful for the fixed point theory in topological vector spaces.
See [13, Satz 1.5.3].

PROPOSITION 2.5. Let F be a topological vector space and K a locally
convex subset of E with K € uc(F). Then K is admissible.

THEOREM 2.6. Let K be a locally convex subset of a topological vector
space E such that K is starshaped with respect to u € K and K € uc(E).
Let U C K be an in K closed neighborhood of u, and v a p-measure of
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noncompactness on E. Let F : U — ¢(K) be a (v, ¢)-condensing upper
semicontinuous mapping such that = ¢ tF{z) + (1 —t)u for every z € g U
and t € (0,1). Then F has a fixed point.

Proof. Let X ={SC E: S8 =cS,ue S FUNS)C S} Then T is
nonempty since co(F(U)U{u}) € X. Let Sy =[\gcx S and S) =(F(UN
So) U {u}). From Sy € X it follows that S; C Sy and so §; € £ (since
F(UNS)) C F(UNS) C S1) and hence Sy € ;. Thus, Sy = co(F(U N
S0)Ufu)). Since y(UNSp) < 7(co (FUNS)U{u}) < @(7(FUNSH))), the
set F(U N Sp) is relatively compact. We conclude that £ is quasicompact
with characteristic set S5. As K is locally convex, the set K n Sy is also
locally convex. Because of K NSy € uc(E), by Proposition 2.5, K NS,
is admissible. By Theorem 2.2, F has a fixed point. This completes the
proof. O

CoRrOLLARY 2.7 [8, SATZ 5]. Let E be a locally convex topological
vector space, K a tlosed and convex subset of ¥ with 0 € K, and W an
open neighborhood of 0 in K. Let v be a measure of noncompactness on
E and FF: WNK — ¢(E) ay-condensing upper semicontinuous mapping
with F(W N K) C K such that Sz & F(x) for every z € 0 (W N K) and
3 > 1. Then F has a fixed point.

Proof. Since K as a subset of locally convex topological vector space F
is locally convex, the conclusion follows by applying Theorem 2.6. a

REMARK. If v is a ¢-measure of noncompactness on K, then we refer to
[10, Theorem].

Now we show that Theorem 2.3 implies a result of O. Hadzi¢, see [4,
Theorem 1].

THEOREM 2.8. Let E be a topological vector space, K a closed and
convex subset of E with the property that every closed and convex subset
of K is admissible, and U C K an in K closed neighborhood of u. Let
~ be a p-measure of noncompactness on K and F : U — ¢(K) a (v, p)-
condensing upper semicontinuous mapping such that =z € tF(z) 4+ (1 — t)u
for every x € OxU and t € (0,1). Then F has a fixed point.

Proof. Let T={SCE:S==c0SueSFUNS)CS} Then T is
nonempty with § = K. Let Sy = [\gcy S and 81 = eo(F(UNSy)U{u}). As
in the proof of Theorem 2.6, it follows that Sy = co(F(U N Sp)U {u}) C K,
and the set F(I/ N Sy) is relatively compact. Since the set Sj is a closed
and convex subset of K and so admissible, by Theorem 2.3, F has a fixed
point. This completes the proof. O
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3. The Schauder fixed point theorem for quasicompact map-
pings '

In this section, generalized versions of the Schauder fixed point theorem
- for quasicompact or condensing multivalued mappings with not necessarily
convex domains in a topological vector space are obtained.

THEOREM 3.1. Let E be a topological vector space, G a starshaped set
with respect to u € G with G € uc(E), and F : G — ¢(G) a quasicompact
upper semicontinuous mapping with a characteristic set S containing u
such that GN S is an admissible subset of E. Then F has a fixed point.

Proof. By assumptions, S is a closed and convex subset of F, u €
GNS, F(GNS) C S, and F(GNS) is relatively compact. Let Fy := Fg, be
the restriction of F to Gy := GNS. Then Gy is admissible, starshaped with
respect to u and Gy € uc(E), and Fj is a compact upper semicontinuous
mapping of Go into ¢(Gg). By Lemma 2.1, Fj has a fixed point and so F.
This completes the proof. (I

THEOREM 3.2. Let G be a nonempty, closed and convex subset of a
topological vector space E, and F' : G — ¢((G) a quasicompact upper
semicontinuous mapping with a characteristic set S such that GN S is an
acdmissible subset of E. Then F has a fixed point.

From Theorem 3.2, we deduce the following known results for quasicom-
pact or condensing mappings, see [11, Theorem 1], [4, Theorem 3].

THEOREM 3.3. Let E be a topoIogibaI vector space, G a nonempty,
locally convex, closed and convex subset of E, and F : G — ¢(G) a quasi-
compact upper semicontintous mapping. Then F has a fixed point.

Proof. Together with characteristic set S for F, the set G N & is closed,
convex and locally convex and so admissible by Proposition 2.5. Theorem
3.2 implies that F has a fixed point. O

THEOREM 3.4. Let E be a topological vector space, and G a nonempty,
closed and convex subset of E such that every closed and convex subset of
G is admissible. Suppose that v is a @-measure of noncompactness on G
and F : G — c(G) is a {7, p}-condensing upper semicontinuous mapping.
Then I' has a fixed point.

Proof. Let zc Gand £ = {SCG:85=70S,z¢€ 5 F(S) CS}. Then
¥ is nonempty since S = G. Let Z = [\gox S and Z, = To(F(Z) U {z}).
From Z € % it follows that Z; C Z and so Z; € ¥ and hence 7 C Z;.
Consequently, Z = o(F(Z)U{z}) C G. By properties of v, we have y(7) <
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(Y F(Z}Y U {z})) = o(v(F(Z))) and hence F(Z) is relatively compact.
We have shown that F is a quasicompact mapping with characteristic set
Z(= G N Z) which is an admissible subset of E. By Theorem 3.2, F' has a
fixed point. This completes the proof. 0

THEOREM 3.5. Let E be a topological vector space, and G a nonempty,
locally comnvex, closed and convex subset of E. Suppose that + is a -
measure of noncompactness on G and F: G — ¢(G) is a (v, p)-condensing
upper semicontinuous mapping. Then F has a fixed point.

Proof. Following the proof of Theorem 3.4, we conclude that F' is qua-
sicompact. By Theorem 3.3, F has a fixed point. a

COROLLARY 3.6. Let G be a nonempty, closed and convex subset of a
Iocally convex topological vector space E, v a measure of noncompactness
on G, and F : G — ¢(G) a vy-condensing upper semicontinuous mapping.
Then F' has a fixed point.

REMARK. In fact, we can see that Theorem 3.4 and Theorem 3.5 remain
true without assuming the condition of monotonicity in the definition of -
measure of noncompactness.
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