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Relocation of a Mobile Robot Using Sparse Sonar Data

Jong-Hwan Lim*
Faculty of Mechanical Energy and Production Engineering, Cheju National University

In this paper, the relocation of a mobile robot is considered such that it enables the robot to
determine its position with respect to a global reference frame without any g priori position
information. The robot acquires sonar range data from a two-dimensional model composed of
planes, corners, edges, and cylinders. Considering individual range returns as data features, the
robot searches the best position where the data features of a position matches the environmental

model using a constraint-based search method. To increase the search efficiency, a hypothesize-
and-verify technique is employed in which the position of the robot is calculated from ali
possible combinations of two range returns that satisfy the sonar sensing model. Accurate

relocation is demonstrated with the results from sets of experiments using sparse sonar data in

the presence of unmodeled objects.
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1. Introduction

Determining the position of a mobile robot
with respect to a global reference frame is a
central problem in mobile robot navigation (Cox
and Wilfong, 1990). Localization is the continual
provision of robot’s position deduced from a
previous position estimation {Leonard and Dur-
rant-Whyte, 1991). One can find a large amount
of work on this kind of continuous position
estimation. For long term navigation, localiza-
tion, i. €., continuous position estimation alone
may not be enough for position estimation,
because it is sirongly based on an a priori estima-
tion of position with a dead reckoning system (e.
g., an encoder system mounted on the wheels). An
unexpected large amount of wheel slip when the
ground condition is wet, even in indoor environ-
ments, or irregularity of the ground surface when
the robot runs over a threshold of a room can
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cause incotrect estimation of the position.

If a mobile robot gets lost it should relocate its
position for error recovery. Relocation is a differ-
ent scenario from localization in that it directly
measures the position in a way that is indepen-
dent of previous movements (Leonard and Dur-
rant-Whyte, 1992), The problem of relocation
using sonar was first considered by Drumheller
(Drumbheller, 1987). He developed a search proce-
dure for determining the robot’s position based
on the interpretation tree method of Grimson and
Lozano-Perez (Grimson, 1990 ; Grimson and
Lozano-Perez, 1984). Drumheller’s approach is
strongly based on the use of line segments as
features that are extracted from scanning sonar
data.

Kuc and Siege! (Kuc and Siegel, 1987), how-
ever, has demonstrated that in a specular wave-
length regime, sonar scans should be expected to
consist of circular arcs, not straight line segments.
Leonard {(Leonard and Durrant-Whyte, 1992)
presented a simple thresholding techmique for
extracting these circular arc features from Polar-
oid sonar data. These features are called Regions
of Constant Depth (RCDs). RCDs are caused by
specular planes and cylinders and also by corners
and edges. Since most reflective surfaces in man=
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made environments contain specular reflectors,
RCDs are a more natural and useful feature for
sonar data interpretation than straight-line seg-
ments. Using range information from a single
sensor only, the RCD features produced by edges
and corners are indistinguishable from the RCDs
produced by planes. Hence, the extension to apply
Drumbheller’s method with RCDs is not straight-
forward. In addition, it would be highly benefi-
cial to develop a technique which can be applied
to sparse sonar data collected by a ring of sensors
instead of relying on the use of densely sampled
sonar data from a rotating sensor.

The present paper addresses a limited form of
the relocation problem, in which the mobile robot
has an accurate, a priori map. The environment is
a room or area inside a building, which can be
modeled in terms of four types of geometric
primitives—corner, edges, cylinders, and walls. Tt
is also assumed that an approximate model of the
objects in the environment is available in terms of
these types of features. In practice, a small hole or
narrow crack between two objects that is not in
the model can also produce range returns. The
relocation method does not rely on an exhaustive-
ly detailed model, but instead can be applied
when the [ocations of key environmental features
are known. An important characteristic of the
method is that it does not need densely sampled
data (e. g., from scanning sonar) from which line
segments or RCDs can be extracted; rather, it can
use sonar range returns individually,

This work assumes a feature-based representa-
tion of the environment. Alternative formulations
of relocation and continuous localization employ-
ing grid-based representations were first consid-
ered by Moravec and Elfes (Moravec, 1989 ; Elfes,
1987), and more recently by Lim (1994), Kang
and Lim (1999), and Shultz and Adams (1998).

2. Sonar Sensing Model

Because of the wide beam pattern of the Polar-
oid sonar, the angle to the reflection object cannot
be reliably estimated from an individual return. If
the echoes reflected from an object can be simulta-
necusly detected by a multiple transducer (Bar-

shan and Kue, 1990), then one can also measure
the direction to a reflection object. However, in
the present paper, we assume that each transducer
operates independently, and hence angle cannot
be measured directly.

A physics-based sonar sensor model can be
used to derive the peometric constraints provided
by measurements for different types of objects. We
assume that environmental features can be classi-
fied according to four types: planes, cylinders,
corners, and edges. The world is approximated as
being two-dimensional, so that planes are re-
presented by lines, cylinders by circles, and cor-
ners or edges by points. We use the word target to
refer (o environmental features. In addition, we
assume the surfaces of the environment are
smooth in relation to the wavelength of the sonar.
In a specular wavelength regime, rough surface
diffraction (Bozma and Kuc, 1991a) can be ignor-
ed. If rough surfaces are encountered, extra
returns will be produced at high angles of inci-
dence from line targets; these will need to be
rejected as outliers as a by-product of the con-
straint-based search.

Bozma and Kuc (Bozma and Kue, 1991b) have
found that with short, impulsive excitations, the
beam pattern of the Polareid transducer has a
Gaussian shape and side-lobe effects are minim-
ized. However, with the standard Polaroid driver
circuit, which uses a longer transmitted pulse,
side-lobe levels can be significant. While under
normal circumstances a range return is produced
by the main central lobe, returns can also be
generated from the side lobes of the radiation
paltern,

For specular surfaces, only the perpendicular
portion of the surface reflects the beam directly
back to the transducer {Kuc and Siegel, 1987). Let
&, be the sensor orientation and & be the angle
between the x axis of the global reference frame
and the line drawn from the sensor location to a
target. For a line target, then, & will be the angle
with respect to the x axis of a perpendicular
drawn from the line to the sensor location as
shown in Fig. |. The range of the values of sensor
bearing, &, that can produce a range return is
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Fig. 1 Target direction and the range of visible
angle for a line target, ¢ is the orientation of

the sensor, and §, is the target direction

b2

(a) A corner (b} Amn edge

Fig. 2 Range of target directions for a point target

o—L<o<o+E (1)

where 4 is defined as the effective beam width
of the sensor and represents the maximum range
of angles over which a return is produced by a
target. We define Eq. (1) as the visible angle
constraint, and @, as the target direction con-
straint for a line target.

For a point target such as a corner or edge, the
range of values of &, i.e., the visible angle con-
straint, is identical to Eq. (1). The target direction
constraint is, however, much different from that of
a line target. As shown in Fig. 2, all values of 4,
within ¢ and ¢ that form the corner or edge can
produce a range return. Hence, the constraint for
the target direction is

h=0=<d (2)

A cylinder is represented by a circle and is
defined by the x and y coordinates of the center
and the radius of the circle. As shown in Fig. 3,
& for a cylinder ts defined as the angle between
the x-axis of the global reference frame and the
line drawn from the sensor location to the center

Fig. 3 Target direction and the range of visible
angle for a cylinder

of the cylinder. The visible angle constraint is
also identical to Eq. (1}, but unlike a line or point
target, no constraints for target direction are
necessary because the cylinder can produce a
range return in any direction as long as the visible
angle constraint is satisfied. One could readily
amend the model to include partial cylindrical
surfaces that do not extend a full 360 degrees.
Consequently, visible angle constraints for all
geometric primitives are identical to Eq. (1}, but
the target direction constraints, i.e., the range of
&, are different (normal direction to the target for
a plane, Eq. (2) for point targets, and no con-
straint for cylinder target). In our sensing model,
we assume that an unoccluded target produces a
range return only if the target direction constraint
and the visibility angle constraint are satisfied.

3. Relocation

Relocation is basically a searching problem
that finds the best correspondence between sensor
data and the model features. Thus the reduction
of the search cost as well as the accuracy of the
result is very important. If we have m data fea-
tures (sonar returns) and n model features, the
search cost will grow at the rate of (#+1)™ when
we use the basic interpretation tree algorithm of
Grimson and lLozano-Perez (Grimson and
Lozano-Perez, 1984).

In Drumheller’s work, line segments extracted
from sonar scans were effectively used as con-
straints for relocation. A line segment can reduce
dramatically both the search cost and the angle
uncertainty of the robots configuration. As stated
earlier, however, it is impossible to extract line
segments from sparse data at one position in a
specular environment.
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The relocation method presented here is strong-
ly based on the sonar sensing model presented in
Sec. 2 in a hypothesize-and-verify search proce-
dure (Grimson, 1990). The algorithm dees not
require that line segments or RCDs be extracted
from densely sampled sonar data. Instead, indi-
vidual sonar returns are considered as a data
feature.

3.1 Search of trial positions (Hypothesize

procedure)

The first step of the relocation is to search all
possible trial positions using the range returns at
the current position. Let R; be i-th range return
originated from the i-th sensor, and F, be the p-
th model feature in the environment. For any two
returns R; and R;, we consider all possible ways
of pairing the returns with targets Fj and F, i.e.,
sets of pairing R:F, and R;F, If we have m
range returns and # targets, the maximum number
m(m—l)4(n(n—1)  The

of pairing will be

actual number of pairings, however, will be lower
than the maximum number, because any pairings
which employ parallel line targets that would
produce zero or infinitely many trial positions are
discarded.

Each pairing generates zero, one, or two pos-
sible positions of the robot. Suppose Fp and F,
are lines (plane features). This pairing can gener-
ate zero or one possible position of the robot, as
illustrated in Fig. 4. In the figure, L; or L; is the
line that represents the possible location of the
robot considering only R; or R; respectively, The

Fig. 4 A possible trial position P hypothesized
from the match of return R, with a line target
F, and return ®; with a line target F,

possible location of the robot, therefore, would be
the intersecting point P of the two lines when we
consider the two ranges together. This point P is
considered to be a trial position that might be the
robot’s current position.

If the target &, is a corner or edge, the possible
location of the robot would be a circle whose
center is the point that defines the point target,
and radius is R; as shown in Fig. 5. A point
target can produce 0, 1 or 2 trial positions when
pairing another target. Similarly to a point target,
a cylinder generates a circle for possible location
of the robot; the radius of the circle is the sum of
the R; and the radius of the cylinder. It can also
give 0, 1 or 2 trial positions when paired with
another target.

The trial position generated in this way does
not always satisfy the physical constraint of the
sonar sensing model. Therefore, such a false trial
position is removed by using the target direction
and visibility angle constraints and occlusion test
defined in Sec. 2. Also, the trial angle for each
trial position that satisfies the constraints is esti-
mated. Suppose we have the pairings R;:F}, and
R;:F,, and F, is a line and Fy; an edge as shown
Fig. 6. The orientation of the robot, &, is calcu-
lated by making the direction R; coincide with
the target direction of the line target Fp. Likewise,
Gp; is calculated by making the direction F;
coincide with the target direction of the line target
F,. These angles are used to perform target
direction, visibility angle and occlusion tests for
the two ranges. If the tests are successful, the

Fig. 5 Possible trial positions P, and P; hypothes-
ized from the match of return R, with a line
target F, and return R, with a point targer

Fq
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(a) (b}
Fig. 6 Possible orientations of the robot for a trial
position P. {(a} 8, is the orientation of the
robot calculated by making the direction R;
coincide with the target direction of the line
target F). (b} &, is calculated from R; and
F, in the same manner.

average angle of the two @, and @&, is chosen as
the trial angle for the trial position.

3.2 Position estimation (Verify procedure)

The other ranges except #; and R; are matched
against the targets based on each trial position
and angle. For each sensor £, a possible range /2
is generated directly using the sonar sensing
model. If the occlusion test is satisfied, 7y is then
compared with the actual range R, of sensor k.
An error range R is used to determine the corre-
spondence between generated and actual ranges, i.
€.,

Ri—Re<Re (3

If Eq. {3) holds true, we get a successful match,
The value of R. is chosen based on the range
accuracy of the sensor and the uncertainty of the
trial position.

By performing the matching process for each
trial position, we count the number of ranges that
match against the targets for each trial position.
Among the trial positions, the one that gives the
maximum number of matches is selected as the
robots current position and orientation. If more
than one position has the maximum number of
matches, and if they all fall within a specifted
error range {x., Ve, &), then we simply average
these positions.

Occasionally, all the best match positions do
not fall in the error ranges. in this case, they are

object 2

object 1

f!rn

Fig. 7 Outline of the room. Small cracks between
objects were not modeled

clustered into groups according to the position
and angle considering the error ranges, and the
number of positions in each group are counted. If
there is again more than one group of which the
number of positions is maximum, then relocation
is considered to have been unsuccessful, and the
algorithm reports failure. If not, we choose the
group which has the maximum number, and
average the positions and angles of the trial
positions in the group to find the robots position
and orientation.

4. Experimental Results

The algorithm described above has been im-
plemented on a Nomad Scout robot equipped
with a ring of 16 sonar sensors spaced at 22.5-
degree angular intervals. Due to a restriction in
the robot communications software, the range
resolution of the sonar data is 0.025 m. This may
limit the accuracy of the results but does not
detract from the viability of the method. Sonar
range values were obtained from the room of
which the outline is shown in Fig. 7. The objects
in the room are paper boxes, desks, a cylinder and |
triangutar shaped object made of metal. Narrow
cracks between some of the objects are not
modeled. The robot’s actual position was esti-
mated by using the initialization technique for
model-based localization method described by
Leonard (Leonard and Durrant-Whyte, 1992); it
is accurate to within 0.02 meters and about 2
degrees. The program parameters used in this
paper were #=>50 degrees, x.=0.1 m, y.=0.1 m,
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Table 1 Results of relocation at 83 test positions
{(x,y:m #:deg)

error | %, ¥< | 0021006 | 0.1 | 0.1 known
failure )
range | g< ) 6 | 10|15 failure
positions 24 | 67 | 78 | 83 0 0
% 29 | 81 |94 (100 © 0

Table 2 Results of relocation with some unexpected

Table 3 Results of relocation with an unexpected
object and a phantom object

(x,y:m §:deg)
error | % y< 0021006(0.1 (0.1 known
failure .
range | g< 2 6 | 10|15 failure
positions 28 | 63 17073 3 7
% 33| 76 | 84|88 3.6 8.4

object (xy:m §:deg) Table 4 Summary of relocation results
error | % ¥y< 10021006 (0.110.1 il known parameters table 1 | table 2 | table 3
ailure |
range | g< | 2 | 6 | 10|15 failure x{m) 0012 | 0013 | 0.013
positions 27 | 67 | 78 82 ; 0 mean y(m) 0.016 0.016 0.0149
% 32 | 81 [94 (988 1.2 0 g (deg.} 277 2.863 2.38
x{m) 0.009 0.012 0.011
tandard
Sandate 1wy | ooi4 | oo1a | oois
deviation
g{deg.} 372 3.82 343
b'l‘";t 9 # Mean and standard deviation are estimated except fail-
obee ures and known failures
O
object 3
4 the sonar data sets were reprocessed with one non
object 1 -existent feature placed in the model at an errone-
ous lecation and with one actuwal feature not
contained in the model as shown in Fig, 8. Table
Fig. 8 Environmental model for testing the effects of 3 illustrates that the algorithm continues to work

the appearance of an unmodeled object and a
non-existence object. Object 2 was present
but was not modeled, and object 3 was
modeled but did not exist

=10 degrees, and R.=0.1 m.

We have tested the algorithm for 83 different
positions in the room, and the results of the
relocation are shown in Table 1. The estimated
positions (x, v) are fairly accurate in spite of the
low resolution (0.025m) of the sensor measure-
. ments. The angle errors are, however, compara-
tively large. This is because both the effective
_beam width of the sensor and the angular interval
of the sampled data are large.

To test the effect of the appearance of unknown
objects, we did not model some of the objects
(object 1 and 2 in Fig. 7) in the environment.
Table 2 displays the performance of the reloca-
tion method. One can see that the results are not
much different from those of Table 1. In addition,

fairly well in this situation. A Summary of the
relocation results are shown in Table 4,

At 7 positions for Fig. 8, the algorithm reported
known failure; two groups, ie., two estimated
positions, persisted till the end of the relocation
step. Figure 9 shows an example of a known
failure. 21,655 trial positions were hypothesized,
and 343 positions among these passed the target
direction, visible angle, and occlusion tests. Of
these 343 positions, the figure shows two of the
positions that matched the highest number of
returns (9 out of 16).

One might think that an additional physical
constraint such as the sonar barrier test employed
by Drumheller (1987) can eliminate false esti-
mates. We believe, however, that the sonar barrier
test is not a good constraint because it can work
only when the angle uncertainty is very low and
the modeled target is not removed. For example,
suppose the cylinder in Fig. 9 was modeled but
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/

(a) Estimated positicn | (good)

(b} Estimated position 2 {falsc)

Fig. 9 Configurations of the rohot and range
returns at the position where the relocation
method failed

removed out of the room later; the sensor that
produced R, will detect the wall F;. As a result,
the estimated position will be eliminated even
though Ry is correct, because it will not pass the
sonar barrier test.

Consequently, we can conclude that the algor-
ithm is robust in the presence of unexpected or
non-existence features if they do not change the
major configuration of the environment. The
program wis run on an IBM compatible Pentium
PC (330 MHz). The average run time was about
0.7 seconds for each position calculation.

5. Conclusions

A method for mobile robot relocation using
sonar has been implemented and tested with real
data obtained in an indoor environment. Since
most object surfaces in an indoor environment are
specular, it is difficult to extract line segments

reliably in typical indoor environments using
data obtained from only one position. While an
approach based on circular arc features (regions
of constant depth) would agree more with a
physics-based sensor model (Kuc and Siegel,
1987), it is still unattractive for a robot to stop
and wait to acquire densely sampled scans with a
single rotating sonar. The algorithm presented in
this paper does not attempt to exiract features
from sonar scans. Instead, it uses the range returns
themselves to define simple geometric constraints
that can be used to guide a constraint-based
search,

The two key ideas of the approach are the
physics-based sensor model to define the geomet-
ric constraints, and the use of a hypothesize-and-
verify technique to control the search complexity.
Trial positions and orientations of the robot are
calculated by considering all possible pairs of
range values and model primitives that satisfy the
geometric constraints. This results in a constder-
able reduction of search cost. Among all possible
irial positions, the algorithm determines the posi-
tion that produces the best correspondence
between the environment and the measurements.
The algorithm has been successfully implemented
with real data, and turned out to be very efficient
even in the presence of some unknown or un-
modeled objects.

An important objective for future research 1s to
integrate the above relocation method with con-
current mapping and localization. This can pro-
vide a means of error recovery for a mobile robot
building a map of an unknown environment
while simultaneously using that map to navigate.
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