Numerical Anslysis of Transcritical Flow in Open Channels Using High-Resolution scheme II. : Applications

고정확도 수치기법을 이용한 하천 천이류 해석 II. : 적용

  • Kim, Won (Water Resources and Environmental Research Div., KICT) ;
  • Han, Kun-Yeun (Dept. of Civil Engineering, Engineering College, Kyungpook National University)
  • 김원 (한국건설기술연구원 수자원환경연구부) ;
  • 한건연 (경북대학교 공과대학 토목공학과)
  • Published : 2001.02.01

Abstract

A numerical model for analyzing transcritical flow in open channel is tested to various cases of channel shape. As the numerical models developed for transcritical flow until now mainly focused on the application to only prismatic or hypothetical channels, there are some restrictions to apply the nonprismatic channels. In this study, to verify the accuracy and stability of second-order implicit ENO scheme, the numerical model was applied to the channels which haute the varying channel bed and width. Also the numerical model was applied to unsteady flow as well as steady flow. The study shows that the numerical model provides good accuracy in the calculation of stage and velocity with no numerical oscillation, particularly in the calculation of hydraulic jump and discontinous flow Then the implicit ENO scheme demonstrated good accuracy as a high-resolution scheme and stability as an implicit scheme.

개수로에서 발생하는 천이류의 해석을 위해 개발한 수치모형을 여러 형태의 수로에 적용하였다. 그 동안 개발된 천이류 해석 모형은 주로 균일하도나 가상하도를 대상으로 개발되어 다양한 형태의 하도에는 적용하기 곤란한 점이 있었다. 본 연구에서는 2차 정확도 음해적 ENO 기법을 하상 및 하폭이 변화하는 다양한 형태의 비균일 하도에서 발생하는 천이류에 적용하여 모형의 정확도와 안전성을 검증하였다. 또한 정상류 상태의 천이류 뿐만 아니라 비정상류 상태에서 발생하는 천이류에도 적용하여 모형을 검증하였다. 모형의 적용결과 수치진동의 발생없이 전반적으로 수위와 유속 등 흐름을 정확하게 계산하였으며 특히 도수의 발생위치, 불연속 구간의 계산 등에서도 좋은 결과를 나타내어 고정확도 기법으로서의 정확도와 음해법으로서의 안정성을 검증할 수 있었다.

Keywords

References

  1. 김 원 (1999). 고정확도 수치기법을 이용한 하천 천이류 해석모형의 개발. 박사학위논문, 경북대학교
  2. 김 원, 한건연 (1998). 'Implicit MacCormack 기법을 이용한 하천흐름의 해석.' 1998년도 학술발표회 논문집(III), 대한토목학회, pp. 293-296
  3. Fennema, R.J. and Chaudhry, M.H. (1986). 'Explicit numerical schemes for unsteady free-surface flows with shocks.' Water Resources Research, Vol. 32, No. 13, pp. 1923-1930
  4. Garcia-Navarro, P. and Priestley, A. (1993). The application of an implicit TVD method for water flow modelling in channels and pipes, Numerical Analysis internal Report No. 6, Department of Mathematics, University of Reading
  5. Garcia-Navarro, P., Alcrudo, F., and Saviron, J.M. (1992). '1D open channel flow simulation using TVD McCormack scheme.' Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 10, pp. 1359-1372 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1359)
  6. Garcia-Navarro, P., Fras, A., and Villanueva, I. (1999). 'Dam-break flow simulation : some results for one-dimensional models of real cases.' Journal of Hydrology, Vol. 216, pp. 227-247 https://doi.org/10.1016/S0022-1694(99)00007-4
  7. Harten, A. and Osher, O. (1987). 'Uniformly high-order accurate nonoscillatory schemes I.' SIAM Journal of Numerical Analysis, Vol. 24, No. 2, pp. 279-309 https://doi.org/10.1137/0724022
  8. Jha, A.K., Akiyama, J., and Ura, M. (1996). 'A fully conservative Beam and Warming scheme for transient open channel flows.' Journal of Hydraulic Research, Vol. 34, No. 5, pp. 605-621
  9. Jin, M. and Fread, D.L. (1997). 'Dynamic flood routing with explicit and implicit numerical solution schemes.' Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 3, pp. 166-173 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(166)
  10. Meselhe, E.A., Sotiropouos, F., and Holly, F.M., Jr. (1997). 'Numerical simulation of transcritical flow in open channel.' Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 9., pp. 774-783 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:9(774)
  11. Shu, C.W. (1997). Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65, NASA Langley Research Center, Hampton, VA.
  12. Vazquez-Cendon, M.E. (1999). 'Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry.' Journal of Computational Physics, Vol. 148, pp. 497-526 https://doi.org/10.1006/jcph.1998.6127
  13. Yang, J.Y. (1990). 'Uniformly second-order-accurate essentially nonoscillatory schemes for the Euler equations.' AIAA Journal, Vol. 28, No. 12, pp. 2069-2076
  14. Yang, J.Y., Hsu, C.A., and Chang, S.H. (1993). 'Computations of free surface flows: I. One-dimensional dam-break flow.' Journal of Hydraulic Research, Vol. 31, No. 1, pp. 19-34