Effects of Temperature and lncoming Concentrations on the Removal of Volatile Organic Compounds in a Biofilter Packed with Peat

Peat가 충진된 고정층 생물반응기에서 온도 투입농도가 휘발성 유기화합물의 분해에 미치는 영향

  • 윤인길 (경희대학교 환경응용화학부) ;
  • 박창호 (경희대학교 산학협력기술연구원)
  • Published : 2001.06.01

Abstract

Biofiltration of volatile organic compounds (VOCs) was performed for 80 days in a biofilter packed with peat. The empty bed residence time was 3.2 min. for a gas mixture of isoprene, dimethyl sulfide, chloroform. benzene, trichlorethylene, toluene, m0xylene, o-xylene and styrene. After 34 days of acclimatization the removal efficiency for a 83 g/㎥ gas input was 93% at $25^{circ}C$ and 73% at $45^{circ}C$, respectively. The maximum cell density at $25^{circ}C$ was 1.12$\times$10(sup)8 cells/g. Removal efficiencies of m-xylene and toluene (91%) were better than that of benzene (86%). The first quarter of the packed column removed 60% of the incoming VOCs.

실험실 규모의 생불여과기에 peat들 패깅하여 휘발성 유기 화합물 (isoprene, dimethyl 야dfide, 블로르포륨, 벤젠, 삼염화에 헬렌, 툴루엔. m-자일렌. 0-자일렌, 스타이렌)의 분해 정도를 가스 처l류시간을 3.2분으로 하여 80일간 측정하였다. 34일의 적응기간이 지난 후 $65~83 g/m^3$로 유입되는 VOC의 분해율 이 $25^{circ}C$액서는 93%이었으나 $45^{circ}C$에서는 여 보다 낮은 73%이었다. $25^{circ}C$에서 77일 후 도달한 최고 세포농도논 초기 농도 의 약 100배인 $1.12\times10^8$세포/g 이었다, 그러나 $45^{circ}C$C에서 도 달한 최고 세포농도는 이의 10분의 1에 불과하였다. m-자이렌과 툴루엔의 분해율 (91 %)에 비하여 벤젠의 분해율 (86%)이 낮았다. 생불여과기의 패정된 부분을 네 구간으로 나누었 을 때 가스가 유입되는 저음 사분회 일에 해당하는 부분에서 VOC의 분해율이 60%에 도달하였다 본 연구는 휘발생 유해 물질 혼합처l를 생붙여과법에 의해 처리하는 것이 가능함을 보여주었고 이러한 기술을 현장에서 배출되는 대기유해풀 칠의 효율적 저감에 적용하면 대기보첸에 기여할 수 있을 것이다.

Keywords

References

  1. Handbook on Biodegradation and biological treatment of hazardous organic compounds(2nd ed.) Martin, H. A.;S. Keuning;D. B. Janssen
  2. Environ. Sci. Technol. v.18 Occurrence and distribution of organic chemicals in two landfill leachate plumes Reinhard, M.;N. L. Goodman;J. F. Barker
  3. Sci. Total Environ. v.42 An overview of environmental and toxicological aspects of aromatic hydrocarbons Fishbein, L.
  4. Air Waste Manage. Assoc. v.41 Biofiltration: an innovative air pollution control technology for VOC emissions Lesson, G.;A. M. Winer
  5. J. Environ. Eng. v.54 Biofiltration : Fundamentals, design and operation principles, and applications Swanson, W. J.;C. L. Raymond
  6. Wat. Sci. Tech. v.37 Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase Cox, C. D.;J. W. Hae;K. G. Robinson
  7. Biodegradation. v.8 Active compost biofiltration of toluene Matteau, Y.;B. Ramsay
  8. Water, Air, and Soil Pollution. v.101 Biological elimination of volatile organic compounds from waste gases in a biofilter Wu, G.;C. Chabot;J. J. Caron;M. Heitx
  9. Appl. Environ. Microbiol. v.45 Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration exposure time, inoculum, and chemical structure Spain, J. C.;P. A. Van Veld
  10. Appl. Environ. Microbiol. v.33 Use of Nuclepore filters for counting bacteria by fluorescence microscopy Hobbie, J. E.;R. J. Daley;S. Jasper
  11. Standard Methods for the Examination of Water and Wastewater(18th ed.) APHA
  12. Am. Water. Works. Assoc. v.87 Biofiltration performance. Part 1. Relationship to biomass Wang, J. Z.;R. S. Summers;R. J. Miltner
  13. J. Environ. Eng. v.56 Temperature effects of trickle-bed biofilter for treating BTEX vapors Lu, C.;M. R. Lin;C. Chu
  14. Ground Water Monitoring Review no.Winter Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer Barker, J. F.;G. C. Patrick;D. Major
  15. Environ. Progress. v.15 Biofiltration of odors, toxic and volatile organic compounds from public owned treatment works Todd, S. W.;J. S. Devinny;E. M. Torres;S. S. Basrai
  16. Biodegradation and Bioremediation Alexander, M.
  17. Appl. Environ. Microbiol. v.57 Substrate interaction of benzene, toluene, para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries Alvarez, J. J.;T. M. Vogel
  18. Environ. Toxicol. Chem. v.15 Effects of substrate mineralogy on the biodegradability of fuel components Sabine, E. A.;J. M. Kathleen