선택적 분리를 위한 분자 각인 고분자의 설계 및 응용

Design and Applications of Molecularly Imprinted Polymers for Selective Separations

  • 정수환 (경북대학교 공과대학 화학공학과) ;
  • 오창엽 (경북대학교 공과대학 화학공학과) ;
  • 서정일 (경북대학교 공과대학 화학공학과) ;
  • 박중곤 (경북대학교 공과대학 화학공학과)
  • 발행 : 2001.04.01

초록

Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIPs were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. The shape of MIP is divided to particle and membrane. MIP membranes can be prepared by surface imprinting, in-situ polymerization, wet phase inversion and the dry phase inversion method. MIPs have been mainly used for analytical separation and biosensor systems to separate and detect chiral compounds and materials with similar structures. However the application of MIP by the chemical industries is still in its infancy stages. This review summarizes the preparative characteristics and applications of MIP with respect to chiral separations and biosensors.

키워드

참고문헌

  1. Molecular Interactions in Bioseparations Gunter Wulff;T. Ngo(Ed.)
  2. Anal Lett. v.28 Recognition of Sialic Acid using Molecularly Imprinted Polymer Matsui, A. J.;Takechi, T.;Yano, K.;Muguruma, H.;Elgersma, A. V.;Karube, I.
  3. Biotechnol. Bioeng v.39 Molecular Imprinting of Proteins and Other Macromolecules Resulting in New Adsorbents Dabulis, K.;Klibanov, A. M.
  4. J. Chromatogr. A. v.691 Separation of Amino Acids, Peptides and Proteins on Molecularly Imprinted Stationary Phase Kempe, M.;Mosbach, K.
  5. Chem. Lett. v.10 Molecular Imprinting of Theophylline in Acrylonitrile-Acrylic Acid Copolyner Membrane, Kobayashi, T.;Wang, H. Y.;Fujii, N.
  6. J. Kor. Ins. Chem. Eng. v.36 no.1 Selective Separation of Testosterone using Biofunctional Polymer Cheong, S. H.;M. G. Suh;J. K. Park;I. Karube
  7. Macromolecules v.30 Testosterone Receptor Binding Mimic Constructed Using Molecular Imprinting Cheong, S. H.;S. McNiven;A. Rachkov;R. Levi;K. Yano;I. Karube
  8. Analytical Chemistry v.67 no.11 Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers Levi;R. S. McNiven;S. A. Piletsky;S. H. Cheong;K. Yano;I. Karube
  9. Chemistry Letters v.12 Enhancing the Selectivity of Molecularly Imprinted Polymers McNiven, S.;Y. Yokobayashi;S. H. Cheong;I Karube
  10. Polym. Adv. Technol v.9 Molecularly Imprinted Polymers as Artificial Steroid Receptors Rachkov A. E.;S. H. Cheong;A. V. El'skaya;K. Yano;I. Karube
  11. J. Polymer Science : Polymer Chemistry v.36 Synthesis and Binding Properties of a Noncovalent Molecularly Imprinted Testosterone-Specific Polymer Cheong, S. H.;A. E. Rachkov;J. K. Park;K. Yano;I. Karube
  12. Synthesis of Immobilized Rhodium Complex Catalyst(IRC cat) Tetrahedron Lett v.36 Molecular Imprinting Effect Gamez, P.;Dunjic B.;Pinel, C.;Lemaire, M
  13. Anal. Chem. v.65 Molecular Recognition in Continous Polymer Rods Prepared by a Molecular Imprinting Technique Matsui, J.;T. Kato;T. Takeuchi;M. Suzuki;K. Yokoyama;E. Tamiya;I. Karube
  14. Anal Chem. v.67 A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine Matsui, J.;Miyoshi, Y.;Doblhoff-Dier, O.;Takeuchi T.
  15. Angew. Chem. Int. Ed. Engl. v.36 no.18 Enzyme Models Based on Molecularly Imprinted Polymers with Strong Esterase Activity Wulff, G.;T. Gross;R. Schonfeld
  16. Anal Chem v.69 Molecular Imprinting New Possibilities for Sensor Technology Kriz, D;O. Ramstr$\"{o}$m;K. Mosbach
  17. J. Am. Chem. Soc. v.118 Imprinted Polymer Membranes for the Selective Transport of Targeted Neutral Molecules Mathew-Krotz, J.;K. J. Shea
  18. Chem. Master v.10 Selectively-Permeable Ultrathin Film Composite Membranes Based on Molecularly-Imprinted Polymers Hong, J. M.;P. E. Andersson;J. Qian;C. R. Martin
  19. Chem. Lett v.8 Enantioselective Electrodialysis of N-alpha-acetyltryptophans through Molecularly Imprinted Polymeric Membranes Yoshigawa, M.;J. Izumi;T. Kitao
  20. Macromolecules v.29 no.25 Molecularly Imprinted Polymeric Membranes Containing DIDE Derivatives for Optical Resolution of Amino-Acids Yoshigawa, M.;J. Izumi;T. Kitao;S. Sakamoto
  21. Polym. J. v.29 Enantioselective Electrodialysis of Amino Acids with Charged Polar Side Chains through Molecularly Imprinted Polymeric Membranes Containing DIDE Derivatives Yoshigawa, M.;J. Izumi;T. Kitao
  22. Langmuir v.12 Moleular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique Wang, H. Y.;T. Kobayashi;N. Fujii
  23. Langmuir v.13 Molecular Imprint Membranes Prepared by the Phase Inversion Technique. 2. influence of Coagulation Temperature in the Phase Inversion Process on the Encoding in Polymeric Membranes Wang, H. Y.;T. Kobayashi;T. Fukaya;N. Fujii
  24. Anal. Chim. Acta. v.365 Molecular Imprint Membranes of Polyacrylonitrile Copolymers with Different Acrylic Acid Segments Kobayashi, T.;H. Y. Wang;N. Fujii
  25. Acta polymer v.47 Molecular Imprinting : An Approach to Tailor Made Synthetic Polymers with Biomimetic Functions Takeuchi T.;J. Matsui
  26. Chromatographia v.43 no.11 Molecularly Imprinted Polymer as Chiral Selector for Enantioseparation of Amino Acids by Capillary Gel Electrophoresis Lin, J. M. (et al.)
  27. Anal. Chem. v.68 no.21 Molecularly Imprinted Polymer Beads: Suspension Polymerization using a Liquid Perfluorocarbon as the Dispersing Phase A. G. Mayes;K. Mosbach
  28. Macromol. Rapid Commun. v.18 Alternative Molecularly Imprinted Polymeric Membranes from a Tetrapeptide Residue consisting of D-or L-Amino Acid M. Yoshikawa;J. Izumi;T. Kitao;S. Sakamoto
  29. J. Chem. Technol. Biotechnol v.70 no.4 Surface Molecular Imprinting on Photosensitive Dithiocarbamoylpolyacrylonitrile Membranes using Photograft Polymerization H. Y. Wang;T. Kobayashi;N. Fujii
  30. J. Membrane Science v.157 Receptor and Transport Properties of Imprinted Polymer Membranes S. A. Piletsky;T. L. Panasyuk;E. V. Piletskaya;I. A. Nicholls;M. Ulbricht
  31. Macromol. v.29 no.4 Molecularly Imprinted Hydrogels Exhibit Chymotrypsin like Activity Karmalkar, R. N.;M. G. Kulkarni;R. A. Mashelkar