Experimental Study on Separation Capacity of Cascade Impactor for Liquid Aerosols

  • Ma, Chang-Jin (Energy and Environment, Graduate School of Energy Science, Kyoto University, Japan) ;
  • Mikio-Kasahara (Energy and Environment, Graduate School of Energy Science, Kyoto University, Japan) ;
  • Park, Kum-Chan (Division of Earth & Environment Engineering, Dong-A University)
  • Published : 2001.04.01

Abstract

To evaluate the correct separation capacity of cascade impactor for liquid aerosol, theoretical and experimental calculations of 50% cut-off diameter(ECOD(sub)50) were performed. A recalculation method of original diameter for hemispheric liquid aerosol collected on casecad impactor is also proposed newly using fixation technique. Calculated values for theoretical (ECOD(sub)50) of 40stage cascade impactor are 20, 6.4, 2.8, and 1.4$\mu\textrm{m}$ at 1st- ,2nd-, 3rd- and 4th-stage, respectively. A good agreement between the result of theoretical (ECOD(sub)50) and that og experimental ones was obtained at Stage 2 and 3. On the other hand, relatively large differences were found at Stage 1 and 4. Fixation for liquid aerosols using ${\alpha}$-cyanoacrylate monomer was performed successfully. The orignal diameter of liquid aerosols collected on each stage was calculated. The maximum levels of number size distribution curves at each stage are 19.8, 6.5, 3.1 and 1.5 $\mu\textrm{m}$ at 1st-, 2nd-, 3rd- and 4th-stage, respectively. The distortion of separation capacity of cascade impactor due to the split, merger, disappearance, and evaporation of liquid aerosols in the fluid did not occur.

Keywords