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New Target Transfer Functions with No Overshoot

Dae-Jeong Yang, Young-Chol Kim

Abstract - To design a controller based on the pole placement method, it is necessary to obtain either a target transfer
function or a desired characteristic equation which results in the closed-loop response. Specially, a step response in which
no overshoot occurs is highly desirable in many applications. In this paper, we present two new prototypes of Type | target
transfer functions whose step responses have an overshoot of less than 0.1%. One prototype is obtained by Taylor's
approximation of a Gaussian function. It is, however, observed that the response delays increase with increasing order, while
the rise times are nearly constant. The other prototype is a modification of the first prototype, so that their transfer function

coefficients have particular values in terms of specific parameters 7y, and 7 (see section 2). The second prototype gives very

useful properties in which step responses are almost the same shape, irrespective of the order. It, also, has no overshoot.
Some other properties of the two prototypes and an application example are given.
Key Words - target transfer function, stability index, time constant, Gaussian function

1. Introduction

In many cases, the classical controller design for linear
time invariant systems boils down to the problem of
properly selecting the target closed-loop model so that it
satisfies stability requirements as well as prespecified
performances. Specific methods are relevant, when the
controller must meet time-domain specifications such as
the maximum overshoot, rise time, and settling time etc.
These are the ITAE, ISE, Bessel filter prototype[l].
Comparing the transient responses, it is well known that
both ISE and ITAE prototypes have some overshoots,
whereas the Bessel prototype has almost none. However,
response rates of all these prototypes become slower as
their order increases.

This parer will suggest two new prototypes of target
transfer function with an overshoot of less than 0.1% and
the difference of transient responses of less than 1.5%
without regard to system order. Furthermore the settling
time of the prototypes can be set arbitrarily. We consider
only the Type 1 model as a target transfer function. Since
the type I system has no zero, the problem is the same as
finding a set of target characteristic polynomials. To do
this, some specific parameters, y; and 7 (see ch.2) which

was first defined by Naslinf2] are introduced. These
parameters play an important role in a derivation of a new
prototype. We start by approximating a function that
normalizes Gaussian magnitude characteristics and linear
phase properties. A set of finite order polynomials can be
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developed by using Taylor's series expansion for the
magnitude function. From this procedure, we get the
interim prototype which gives very similar step responses
as those of the Bessel prototype. But the coefficients and
the pole locations of the two prototypes ar quite different
from each other. Modifying this prototype, a new form
can be obtained. In order to know how much each pole
(or pole pair) has any effect on the step response, we
define a special function D which is called the
dominance function. It is said that either a real pole or a
complex pole pair that has a large D value corresponds
to the dominant pole(or pole pair). Through step
responses, pole location patterns, and the dominance
function, some properties of the proposed two prototypes
are represented. As an example, a new prototypes will be
applied to the pole placement design problem for the
controller and then will be compared with the results
designed by the ITAE and the dominant second order pole
placement methods, which are mostly used in the classical
control designs.

In the second chapter, we define a Gaussian function,
necessary parameters, and a dominance function. In
chapter 3, we suggest two new target transfer functions.
In chapter 4, some properties of the new target transfer
functions will be given. To show the practicality of the
new target transfer functions, chapter 5 provides an
example. Finally, the conclusion follows.

2. Definitions

Consider the following Gaussian function.

|G(w) = e~ (1)
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where, ¢ is a positive real number. It is known that this
function has no overshoot in step response[3]. We can
write a target transfer function of Type I as

— Y(S) — an 2
() R(s) s"+as" it a, st a, @

The characteristic polynomial is
A)=aps"+ars" '+ ta,ysta, (a=1 3)

The definition of system types is referred to in [1]. It is
noted that a system of Type I has a closed-loop DC gain
of 1, that is, 7{0)=1. Now, define the following
parameters in terms of only polynomial coefficients.

a;

Yy ="
U oagaaiy

1=1,2,,n—1 4
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We call y;, and ¢ as the stability index and the

equivalent time constant, respectively. The characteristic
polynomial (3) can be written by y/s and ¢ below.
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Naslin[2] first suggested that the stability index, y; ,

very closely relates to the damping ratio and for some
given values 7y/'s, the shape of the step response does not

change much with increasing order. Manabe[4] found a
set of y's, 7=2.5,7n=r=-=y,.,=2. These
value have favorable characteristics which have almost no
overshoot for system Type [ and almost equal response
forms irrespective of the system order. Even though the
Manabe form was found heuristically, its properties are
empirically true.

As a measure of indication how much each complex
pole pair (or real pole) effects the step response, we are
going to, newly, define the dominance function. We
rewrite (2) as

W
T =5ty =

a
2 . (8)
inIl( s—p)

Assume that T(s) has 2m complex conjugate poles

with p;= 8,+jw; and »—2m real poles. Then the unit
step response can be written as

1 7K
Y(s)= s * szl (s—a,) : ®
G G
* :21{ G—p) (s—p;)}

Taking the inverse Laplace transform, we have

() =1+ nleZnK,-e g EIZIC,-IeB’Icos(a)jH- 8y (10)
8;= arg(C))

Let us now define the dominance function D.

(T, AL ar

1=1,2,,(n—m)

(1)

where A;,=K; or 2|C{, A;=a; or B, The T is the
time (5 reaches in the steady state. It is sufficient to
choose T = 4r. The dominance function [; equals the

area of envelope of each damped sinusoid of 3(#). Thus,
it means that the larger D; a certain pole pair has, the

more dominant the pole pair effects on the step response.
For analysis and design purposes, it is important to sort
out the poles that have a dominant effect on the transient
response. In most textbook, it is usual to qualitatively
sectionalize the s-plane into two regions in which the
dominant and insignificant poles can lie. The two regions
are recognized by merely how far or close to the
imaginary axis the poles are. We must point out that such
definitions may not be proper for the analysis. Let us see
an example.

Example 1 : Consider the following fourth order transfer
function.

_ 145.28

T =70 7572.5)(s+3.2550.7)
145.28

(s=p)(s— P1)(s— poX(s—p3)

. 1} Im (s)
P

Re (s)

P
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poles Damping ratio D %) l
o, D —2.1+59.. 0.734 228 1
b2, 3| —3.2+50. 0.977 772 1

We see that though p,— p; pair lies farther from the
imaginary axis than p, — p] pair, p,— p; pair has a much

more dominant effect than p, —p] . \VAVAV/

3. New target transfer functions

In this section, two new prototypes of Type 1 transfer
function will be presented.

3.1 G-type

Taking the Taylor series expansion of (1) at =1,

GG =e " = ——L glawz K (12)
nzz n!

0

Since the denominator of (12) is a infinite series, we
need to approximate it to #x-th order of a polynomial.

232 233
D(jo)=1 +ao?+ {41 Lag)
2yn
aw
T

(13)

Let w=s/j , and substituting this into (13),

Table 1 A new target function by approximation Gaussian
function

T(s)=

an
order R T ——
sS'ta s et a,  sta,

2 S +2.1974/V as+1.4142/a
3 $°+3.5615/V as® +4.8423/as+2.4495/ (aV a)

4 | $'+5.0129/Vas® +10.867/as” +11.423/(aV a)s
+4.899/d°

5 | £+6.714/Vas' +2o.062/a§3+32.778/(a\/;4)32
+28.951/a’s+10.954/(a*V a)

6 | s° +8.4845/V as® +32.993/as' +74.313/(aV a)s*
+101.23/a”s* 4 78.438/(a™ @)s + 26.833/ &’

s"+10.366/V as® +50.225/as’ + 145.90/ (aV @)s*
7 +272.10/a"s* + 323.54/ (™ a)s* + 225.78/a’s
+70.993/(a™ a)

s* +12.354/V as” +72.316/ as’ + 259.63/ (aV a)s®
8 +620.73/a”s* +1005.9/ (™ @)s> +1073.3/a°s*
+686.56/{a™ a)s+200.8/a*

DIOD(—5) = (~1)" L5 ...y LS

o —as*+1.(14)

Solving (14), we obtain D(s) as shown in Table 1.

1 T T - T ~T
o.8f i
o
o L n=2
3 0.6
=
g n=3
« 0.4F -4
b Original n=
Gaussian
0.2}k . n=5~81/
function
0 s . L
0 05 1 1.5 2 25 3
w

Fig. 1 Comparisons of frequency magnitudes of the
original Gaussian function and target transfer
functions.

This standard transfer function is called the G-type
target transfer function. Fig.1 shows frequency magnitude
responses of the original Gaussian function and target
transfer functions in Table 1 when g=1. When #=5,
we see that the maximum difference of two functions is
0.1%.

Substituting values of coefficient, in Table 1 into (4), it
is evident that /s are independent upon the parameter ¢
in (1). The /s that are calculated by coefficients in
Table 1 are shown in Table 2.

Though some algebraic calculations, we obtained
converting equations relating between 7 and ¢, and, also
between ¢, and g, which are shown in Table 3. These
two tables are very useful for designing a controller so
that it satisfies the no overshoot requirement and the
desired settling time[4].

Table 2 Stability index of G-type target transfer function

order 71 7o 73 74 75 ¥s Y1

3 12.6878/2.6195 l

4 12.45082.03802.3681
_

/S 12.334211.84991.8279|2.2492

6 |2.2651]1.7580|1.6535|1.7265|2.1819

(
7 12.219411.703811.5685}1.5576] 1.6679|2.1394

L 8 |2.1871]1.6682)1.5186|1.4754|1.5016|1.6304|2.1106
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Table 3 Relations of between ¢ and r, ¢,

Equivalent time Settling time £,

order constant 7 (Approx. values)

3 1.9768xV a 4.78xV a

4 2.3317xV & 5.01xV a

5 2.643xvV a 5.25xV a

6 2.9232xV a 5.50xVa

7 3.1803%V a 5.74xV a

8 3.419xV ¢ 5.96xV a
3.2 Y-type

Kim et al.[5] found that when the magnitude patiern of
7S [ri,72,-, 7.—1] with respect to the number of
order looks like an “S” curve as shown in Fig.2, it has
the almost same response shapes irrespective of the
number of orders.

3
’)_’X‘A S Type 2 32 v
2.2651
31819 ¢l 84 184,V 1.8:;/
&
1.7266 16535 | 17580
G - Type
1
5 4 3 2 1 )
i degree

Fig. 2 v, pattemns of S and G prototypes( n = 6)[5].

Based on this fact, we choose the /s of the 4th order
case in Table 2 as reference values and, subsequently, set
the y/'s of higher orders so that these v;'s has the same
behavior as the S-type pattern above. The results are laid
out in Table 4. Substituting each v, in Table 4 into (7),
a new prototype of target transfer function are obtained as
shown in Table 5. This standard transfer function is called
the Y-type target transfer function. We have calculated

Table 4 Stability index of Y-type target transfer function

order 71 7e 73 74 75 76 77
4 124508 2.0380(2.3681

-

5 [2.450812.0380|2.0380 | 2.3681

2.4508 | 2.0380 | 2.0380 | 2.0380 | 2.3681

2.4508 | 2.0380 | 2.0380 | 2.0380 | 2.0380 | 2.3681

o0 | | N

2.4508(2.03802.0380|2.0380|2.0380|2.0380 | 2.3681

t,=2.2857r. For example, assume that if we want to
design a controller satisfying the settling time ¢,=1 sec,
then 7r=0.4375.

Table 5§ Target transfer functions of Y-type

8y
n n—1
s'tays” T+t a,sta,

4 | s'H11.828/7s*+59.078/7%s" +144.79/7%s
+144.79/7*

5 18 +24.106/rs' +245.38/7s° +1225.6/ 7%
+3003.7/7*s+3003.7/7°

6 | T49.127/rs°+1019.2/c s + 10374/ 75
+51817/7's” + 126990/ ° s+ 126990/ °

7 |8’ +100.12/7s° + 4233/ 5"+ 87815/ 5" + 893890/ ' s°
+ 4464800/ 7°s” + 10942000 / °s + 10942000

s +204.05/zs" + 17582/ 7 s° + 743330/ £ 5°
8 | +(1.5421¢ 10%)/z's’ +(1.5697  10%)/¢'s’
+(7.8403 % 10%)/ %" + (1.9215 % 10%)s + (1.9215 % 10°

T(s) =

order

Thus, we can select a desired characteristic polynomial
with the predetermined system order ». Then we can set
up the Diophantine equation with the target polynomial.
Finally, solving the equation, the controller will be
obtained.

4. Properties of the new target transfer functions

This section deals with some properties relative to the
two prototypes in the previous section. To do this, we
will investigate the step responses, the poles patterns, and
the dominance of each pole pair of both prototypes.

4.1 G-type

The step responses of the G-type functions in Table |
are shown in Fig.3. All these give rise to no overshoot,
whereas their response delays increase as the order
becomes larger.

0.8 n=2 =
E 0.8 n=3’ - - n=8
S 04 ,
0.2
o .
0 2 4 6 8

Time(sec)

Fig. 3 Step responses of G-type transfer functions
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Fig. 4 Root location of G-type transfer functions

The pole locations of the G-type transfer functions are
depicted in Fig.4. We can see that all the roots seem to
be located on the arc of an ellipse. When »=4~6, the
damping ratios and the dominance function D), relative to
the G-type transfer functions are given in Table 6. It is
observed that the G-type has the dominance property of
which the pole pair(or real pole) that results in the largest
damping ratio is superior to the others.

Table 6 Dominance functions of G-type( n=4~6)

n bi & D,
P 1.1811+51.0604| 0.744 23.77
—1.3554+70.328 0.972 76.231
—1.2034+71.2989 0.679 10.66
5 | —1.4193%50.5993 0.921 49.66
[ —1.472 1 | 3969 |
~1.2207+/1.5145] 0628 453
6 | —1.4614+70.833 | 0869 w4
—1.5601+70.2687 0.985 66.05

4.2 Y-type

Fig.5 and Fig.6 show the step responses and their pole
locations of Y-type standard transfer functions given in
Table 5, respectively. This new prototype requires that the
overshoot is less than 0.12% and the difference in
transient responses for n=4~8§ is less than 1.1%. It is
obvious that the Y-type with this property will be very
useful in dealing with design problems.

As shown in Fig.6, the Y-type has a quite different
root pattern from that of the G-type. It is observed that
the Y-type has always two pairs of the complex conjugate
poles and the #—4 real poles when n=4. Table 7
shows that the three poles close to the imaginary axis
much more dominant than the remainder.

- n=4-8

Qutput
(=]
(o]

0 1 2 3 4 5

Time(sec)

Fig. 5 Step responses of the Y-type transfer function

10 T T —

© T ¢
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5t i
x
z £O
g OF (@] *O g T
x
St J
O
10 " 1 . " L
44 12 10 8 6 -4 2
Re(s)

Fig. 6 Root location of the Y-type transfer function

Table 7 Dominance functions of Y-type( 7=4~86)

n b; & D;
. L 2.7538+72.4725 0.744 25.77
—3.1602+70.7644 0.972 74.23
—2.753+,1.4322 0.887 70.19

3 —4.4196 ! 28.47
—7.0902+;4.5161 0.843 1.34
—2.747+71.5437 0.872 60.835
—3.8048 1 38.745

6 —11.507 1 0.379
~14.161£/9.5707 | 0829 | 00417

5. Example

We attempt to compare the controller design using
Y-type and G-type transfer functions with those of the
dominant second order pole-placement, the ITAE, which
are generally well known. Consider a feedback system as
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shown in Fig.7 and the plant below ;

_ N 2
CO="Dls) = (7+0.2576.2)

For the purpose of simple comparison, the following
two specifications are considered.

+ The order of both the numerator and the denominator
of the controller are of the second order.

» Settling time( +196) should be less than 2.5sec.

RN BN TN PO
A(5) D(s)
B
A(s)

Fig. 7 Feedback system

From the above conditions, the closed-loop system must
be of the fifth order. In the dominant second order pole
placement design, we choose three poles as main roots at
—92+71.9, -10 such that it satisfies the given settling
time. We place the rest of the poles at -15 and -25, which
correspond to the observer poles, here. With the desired
poles, the resulting controllers are shown in Table 8.
When the ITAE prototype[1] is applied, we first have to
denormalize the standard values to have the desired
settling time.

Table 8 Controllers designed by pole-placement, ITAE,

Y-type

Control

Method Controller
pol B(s) _ _8.871s°+19.8451 38,05
P;;eemem A(s) — 0.00275° +0.143s+ 2 .5678

C
F(s)=38.05(1+ s/15)(1+ s/25)
B(s) _ 157.89s° +281.89s + 653.46

ITAE A(s) s°+11.51s+79.0725

F(s)=653.4562
B(s) _ 98.657s"+35.392s+ 223.69

G-type Al §+13.849s+78.761
F(s)=1223.69 |
B(s) _ 316.0653s° + 444,985+ 959.451
Y-type Als) ' +21.7896s+193.418

F(s) =959.4507

The ITAE controller with a denormalizing parameter
w,=4.2 are given in Table 8. Finally, in order to use
the Y-prototype, we first calculate r==1.093 from the
algebraic relation #,=2.28577. Similarly, in G-prototype,
we obtain r=1.2585. Substituting this r into the fifth

order form in Table 1 and Table 5, we have the desired
characteristic polynomial. Then, it is easy to find a
controller.

Co(s) ="+ 14.1055s° + 88.4606s + 303.55%+ 562.8835 s + 447.24
CAs)=5"+22.04s"+ 205,115s>+ 936.67s° + 2098 .85+ 1918.9

All controllers result from 4 different design methods
which appear in Table 8.

Fig.8 shows the step responses of the closed-loop
system with each controller. Four controllers satisfy the
given specifications. Both the Pole-placement and the
ITAE have overshoots, but Y-type and the G-type have no

1.2
Pole Placement
1 - P P

0.8

ITAE »- - Y-type

0.6

Output

- G-type
0.4

0.2

0 1 2 3 4

Time(sec)

Fig. 8 Step responses of each controller

40 o o e

(]
(]

nN
o

Pole placement
ITAE
: Y -type
R .

Y
(@]

o

Control Signal Input

G-type

0 1 2 3 4 5
Time(sec)

-
©

Fig. 9 Control input signals of each controller

Table 9 Comparisons of control input energy and
stability margin

Control signal i Stabilit i
Control gnal margin r ability margin
Method ; : Phase
Max. ‘[ Min. | Energy | Gain{dB] [degree]
Pole
Placoment L37.58 342 | 5922 | 6.8t 504
ITAE 6.56 | -3.21 | 20.12 | 2.103 246
Gtype | 228 [-0.0015| 4258 | 5.186 | 52.42 j
Yype | 3.96 | 000 | 6047 | 489 | 472 |
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overshoot. Next, the control input of each controller will
be compared. The magnitude of the control input is one
of the important factors in design because it relates to the
capability of the input actuator. Fig.9 and Table 9 show
the control input magnitude, and energy of each case.
Note that the control input of the Y-type and the G-type
are much smaller than the others.

6. Conclusions

We present two new prototypes of Type 1 target
functions which have no overshoot. The step response in
which no overshoot occurs is required in many control
applications. Based on the Gaussian function, we obtained
target characteristic polynomials. This first prototype gives
no overshoot but its response delay increases as the order
becomes large. By using specific parameters, »; and ¢

which are defined from the coefficients of characteristic
polynomials, and based on the Kim's prototype[3], we
proposed a second prototype for target transfer functions.
This one has three major characteristics; (i) no overshoot,
(i) the same transient response shapes irrespective of the
order #, and (iii) the arbitrary settling time is easily met.
We defined a dominance function which means how much
each complex conjugate pole pair(or a real pole) effects
the step response. Using the dominance function, the pole
dominancy property of two prototypes has been analyzed.

Dae Jeong Yang received the
B.Eng degree in electronics engi-
neering from Chungbuk National
University, Korea, in 1999. She is
currently working toward the M.S.
degree in Chungbuk National Uni-
versity, Korea. Her research interests
include Coefficient Diagram method
and the robust control in parameter

space.

Finally, we show through a classical control design
example that the proposed target transfer functions are
very useful for this purpose.
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