Computation of Temperature Rising by Absorbed Power Radiated from a Portable Phone

휴대폰 전파인 인제 흡수전력량과 온도 상승량 산출

  • 이승학 (경북대학교 공과대학 전자공학과) ;
  • 김채영 (경북대학교 공과대학 전자공학과) ;
  • 강승진 (경북대학교 공과대학 전자공학과)
  • Published : 2001.04.01

Abstract

Absorbed power of the human head radiated from a 900 MHz portable phone and temperature rise are computed using FDTD(Finite-Difference Time-Domain) method. For this computation the 5 layered media for the human head modeling and the monopole antenna attached to metallic box for the portable phone are used. To reflect the real circumstances typical sizes of human heads and portable phones are considered in the calculation. The length of monopole antenna is 8.15 cm, and the output power of a phone is 600 mW. Under the predetermined model the distribution of 1 g, 10 g averaged SAR and temperature rise rate over the human head are calculated, from which it was found that the position of maximum SAR is near at the head skin surface, not deep places far into the head. The position of the highest temperature is located far from the head skin more than that of the maximum SAR occured. The averaged SAR and temperature along the distance between the head and phone are calculated according to seperation distance between the head and phone.

본 논문은 유한차분 시간영역 해석법(Finite-Difference Time-Domain Method)을 사용하여 900 MHz용 휴대폰으로부터 방출된 전파의 인체 두부(頭部)에 흡수된 전력량을 산출하였고, 흡수전력으로 인한 두부내의 온도 상승량을 계산하였다. 이를 위하여 인체두부를 5층 매질로 모델링하였고, 휴대폰은 금속상자에 부착된 모노폴안테나로 모델링하였다. 모델링에 사용된 인체두부와 휴대폰의 크기는 상용의 값을 사용하였다. 사용된 모노폴 안테나의 길이는 8.16 cm이고, 휴대폰의 출력은 상용 900 MHz의 600 mW을 사용하였다. 설정된 모델링하에서 인체의 위해(危害)정도를 알려주는 지수는 1 g, 10 g 평균 北 흡수율(SAR-Specific Absorption Rate)의 분포를 계산하였고 이에 따른 1g, 10 g 평균 온도 상승량을 계산하였다. 그 결과 비흡수율이 최대가 되는 지점은 인체 두부의 피부 부분이었고 최대 온도 증가 위치는 이보다 안쪽부분에서 나타났다. 인체 두부와 휴대폰의 이격거리에 따른 SAR과 온돈 상승량을 계산하였다.

Keywords

References

  1. IEEE Trans. Electromagn. Compat. v.38 no.3 Evaluation of the SAR distribution in the human head for celluar phones used in a partially closed environment P. Bernardi;M. Cavagnaro;S. Pisa
  2. IEEE Trans. Microwave Theory Tech. v.44 no.10 Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz O. P. Gandi;G. Lazzi.C. M. Farse
  3. IEEE Trans. Microwave Theory Tech. v.44 no.10 The dependence of EM energy absorption upon human head modeling at 900 MHz V. Hombach;K. Meier;M. Burkhardt;N. Kuster
  4. American National Standard-Safety Levels with Respect to Exposure to Radio Frequency Electromagnetic Fields
  5. Health Phys. v.74 no.4 International Commission on Non-Ionizing Radiation Protection, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields(up to 300 GHz)
  6. IEEE Trans. Microwave Theory Tech. v.47 no.8 FDTD computation of temperature rise in the human head for portable telephone J. Wang;O. Fujiwara
  7. IEEE Trans. Biomedical Eng. v.46 no.8 Heating of tissue by near-field exposure to a dipole: a model analysis P. J. Riu;K. Forster
  8. Finite Difference Methods in Heat Transfer M. N. Ozisik
  9. IEEE Trans. Antennas Propagt. v.14 Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media K. S. Yee
  10. IEEE Trans. Microwave Theory Tech. v.23 no.8 Numerical solution of steady-state eletromagnetic scattering problems using the time-dependent Maxwell's equations A. Taflove;M. E. brodwin
  11. The Finite Difference Time Domain Method for Electromagnetics K. S. Kunz;R. J. Luebbers
  12. J. Comput. Phys. v.114 A perfectly matched layer for the absorption of electromagnetic wave J. P. Berenger
  13. IEEE Trans. Antennas Propagt. v.42 no.8 Performance analysis of antennas for hand-held transceiver using FDTD M. A. Jensen;Y. Rahmat-Samii
  14. IEEE Microwave and Guided Wave Letters v.3 no.9 A new finite-difference time-domain(FDTD) algorithm for efficient field computation in resonator narrow-band structures R. Mittra;P. H. Harms
  15. 한국전자파학회논문집 v.9 no.4 FDTD 방법을 이용한 휴대폰 전파의 인체 흡수 전력량 산출 김채영;이승학;정백호
  16. IEEE Trans. Electromagn. Compat. v.22 no.2 Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems A. Taflove