레졸형 페놀수지/폴리비닐알콜 블랜드계의 열적 특성에 관한 연구

Studies on the Thermal Properties of Resol-type Phenolic Resin/Polyvinylalcohol Blend System

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 정우영 (한국화학연구원 화학소재연구부) ;
  • 박병기 (전북대학교 섬유공학과) ;
  • 최경은 (전북대학교 섬유공학과)
  • 발행 : 2001.06.01

초록

Resol-type phenolic resin (RPR)/polyvinylalcohol(PVA) blends were prepared and the effect of RPR/PVA blend ratio on the thermal properties of the blends was investigated with differential scanning calorimeter (DSC) thermogravimetric analysis (TGA) techniques. The intermolecular interaction between RPR and PVA was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Cure activation energy ($E_{a}$) and glass transition temperature ($T_{g}$) were obtained by DSC analysis. TGA results were also used to calculate initial decomposition temperature (IDT), integral procedural decomposition temperauture (IPDT), and decomposed activation energy. FT-IR results show the presence of hydrogen bonding in the polymer blends. $E_{a}$ shows a maximum value when PVA content is 5 vol%. ALL the DSC thermograms of different phenolic blend systems in the second scan exhibit a single $T_{g}$, indicating that the phenolic blend systems are miscible. Also, TGA results show that thermal stability is best when PVA content is 5 vol%, which is in good agreement with the $E_{a}$ results. This is probably due to the intermolecular hydrogen bonding interaction between the hydroxyl groups in RPR and PVA.

키워드

참고문헌

  1. Phenolic Resins A. Knop;L. A. Pilto
  2. Macromolecules v.30 C. C. M. Ma;H. D. Wu;P. P. Chu;H. T. Jen
  3. J. Appl. Pilym. Sci. v.44 A. Matsumoto;K. Hasegrwa;A. Fukuda;K. Otsuki
  4. Polymer v.38 H. D. Wu;P. P. Chu;C. C. M. Ma
  5. Macromolecules v.27 X. Zhang;D. H. Solomon
  6. Polyvinylalcohol Fibers I. Sakurada
  7. Macromolecules v.8 T. Nishi;T. T. Wang
  8. Die. Angew. Makromol. Chem. v.235 H. D. Wu;C. C. M. Ma;M. S. Lee;Y. D. Wu
  9. Polymer v.36 N. Mekhilef;P. Hadjiandreou
  10. Macromolecules v.20 M. M, Coleman;C. J. Serman;P. C. Painter
  11. Macromolecules v.24 P. C. Painter;J. F. Graf;M. M. Coleman
  12. Macromolecules v.11 P. R. Couchman
  13. Interfacial Forces and Fields: Theory and Applications S. J. Paek;J. P. Hsu(Ed.)
  14. J. Colloid Interface Sci. v.226 S. J. Park;M. S. Cho;J. R. Lee
  15. J. Polym. Sci. Part B, Polym. Phys. C. C. M. Ma;H. D. Wu;C. T. Lee
  16. J. Colloid Interface Sci. v.228 S. J. Park;S. G. Lee
  17. Macromol. Chem. Phys. v.201 Y. Hu;P. C. painter;M. M. Coleman
  18. Macromolecules v.27 P. Pedrosa;J. A. Pomposo;E. Calahorra;M. Cortazar
  19. Bull. Chem. Soc. Jpn. v.38 T. Ozawa
  20. J. Res. Nat. Bureau Stand. v.57 H. E. Kissinger
  21. J. Polym. Eng. v.16 T. Ojeda;S. Liberman;R. Amorim;D. Samios
  22. Anal. Chem. v.33 C. D. Coyle
  23. Anal. Chem. v.35 H. H. Horowitz;G. Metzger
  24. J. Polym. Sci. Part B, Polym. Phys. v.36 P. P. Chu;H. D. Wu;C. T. Lee