Effect of Cross-Linking Agent on Mechanical Properties and Thermal Stability of Polyurethanes

가교제가 폴리우레탄의 기계적 특성 및 열적 안전성에 미치는 영향

  • Published : 2001.04.01

Abstract

Chemical cross-linking was introduced to enhance the mechanical and thermal properties of thermoplasic elastomer, i.e., polyurethane. By changing the amount of cross-linking agent added, cross-linking density was controlled and relationship between the internal structure and mechanical properties has been studied. Polyurethane used in this study consists o 4, 4'-diphenyl-methane diisocyanate (MDI), 1, 4-butanediol as a hard segment and polytetramethylene glycol (PTMG MW=1000 g/mol) as a soft segment. Cross-linking agent having free isocyanate functional groups at both chain ends was prepared with PTMG (MW=1000 g/mol) end-capped with MDI. By melt-blending the polyurethane with cross-linking agent in an extruder at 200℃∼220℃, allophanate functional groups were expected to form through chemical reaction between the N-H group in the hard segment and free isocyanate group in the cross-linking agent. Four samples having 0%, 10%, 15%, 20% (w/w) cross-linking agent were prepared. From stress-strain curve, the mechanical properties and hysteresis behavior of four samples were evaluated. And the effect of cross-linking on the degree of phase separation was studied with the DSC and FTIR-ATR measurements. Using synchrotron small angle X-ray scattering method, thermal stability of hard domain was investigated. upon cross-linking, mechanical properties were observed to be enhanced, however, the thermal stability was lowered.

Keywords

References

  1. Encyclopedia of Polymer Science and Engineering(2nd Ed.) v.13 M.F.Mark;N.M.Bikales;C.G.Overberger;G.Menges
  2. J. Macromol. Sci., Rev. Macromol. Chem. v.C4 no.1 G.M.Estes;S.L.Cooper;A.V.Tobolsky
  3. J. Polym. Sci. v.8 J.A.Koutsky;N.V.Hien;S.L.Cooper
  4. J. Macromol. Sci., Phys. v.B2 S.B.Clough;N.S.Schneider;A.O.King
  5. J. Polym. Sci., Phys. Ed. v.16 E.M.Barrall;T.C.Clarke;A.R.Greggers
  6. J. Polym. Sci., Chem. Ed. v.19 T.N.Bowmer;J.H.O'Donnell
  7. J. Appl. Phys. v.43 R.H.Baughman
  8. Polyurethane Elastomers(2nd Ed.) C.Hepburn
  9. Polyurethane Handbook(2nd Ed.) K.Recker;G.Oertel(ed.)
  10. Polymer Bulletin v.17 K.Busek
  11. Die Makro. Chemie. v.98 H.Okuto
  12. J. Macromol. Sci., Chem. v.A23 A.Sebenik;U.Osredkar;I.Vieovisek
  13. J. Macromol. Sci., Chem. v.A24 M.Spirkova;M.Kubin;K.Dusek
  14. Polymer Bulletin v.14 M.Ilavsky;K.Bouchal;K.Dusek
  15. J. Polymer Sci., Polym. Phys. v.36 Z.S.Petrovic;I.Javni;V.Divjakovic
  16. J. Polymer Sci., Polym. Phys. v.36 Z.S.Petrovic;I.Javni;G.Banhegy
  17. J. Appl. Polym. Sci. v.42 Z.Petrovic;M.Zlavsky;K.Dusek;M.Vidakovic;I.Javni;B.Banjanin
  18. J. Appl. Polym. Sci. v.51 W.Chang;T.Baranowski;T.Karalis
  19. J. Appl. Polym. Sci. v.51 L.J.Buckley;P.T.Hammond;T.Karalis
  20. Polym. Bull. v.12 K.Dusek;M.Ilavsky;L.Matejka
  21. Polym. Eng. Sci. v.20 T.R.Hesketh;J.W.C. Van Bogart;S.L.Cooper
  22. Polymer v.22 J.W.C. Van Bogart;D.A.Bluemke;S.L.Cooper
  23. Polym. Prepr. v.13 C.M.F.Vrousenrates
  24. J. Org. Chem. v.24 I.C.Kogon
  25. J. Polym. Sci. Polym. Phys. v.195 J.Blackwell;J.R.Quay;M.R.Nagarajan;L.Born;H.Hespe
  26. Macromolecules v.25 Y.Li.T.Gao;J.Siu;K.Linliu;C.R.Desper;B.Chu
  27. J. Polym. Sci., Polym. Phys. v.24 T.P.Russell;J.T.Koberstein
  28. Elements of X-ray Diffraction(2nd Ed.) B.D.Cullity
  29. Small Angle X-ray Scattering O.Glatter;O.Kratky
  30. Macromolecules v.26 K.N.Kruger;H.G.Zachmann