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Nonlinear Random Vibration Analysis of
Thin Laminated Plates
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Abstract

Composite materials also known as fiber reinforced plastics have been developed and used in many
engineering applications due fo their outstanding mechanical properties. Laminated plafes as  structural
components that are made of in composite material are widely used. Therefore, nonlinear response of laminated
composite plates modeled with finite elements and excited by stochastic loading is studied. The classical
laminated plate theory is used to account for the variation of strains through the thickness for modeling laminated
thin plates. Approximate nonlinear random  vibration analysis is performed using the method of equivalent

linearization fo account for material non-inearity.
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1. INTRODUCTION

Laminated plates are finding an increasing use
in many engineering applications. Structural
components made of laminated composite
materials have a great potential for their use in
civil engineering structures. Their most attractive
properties are high strength to weight ratio,
excellent corrosion resistance, very good fatigue
strength, ease of formability, low coefficient of
thermal expansion, high damping characteristics,
etc. The composite components used in many of
these areas are noticeably exposed to stochastic
dynamic loads. One of the most important
characteristics of composite materials is their

strong anisotropic properties and significant
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non-linearity in the shear stress-strain law. The
classical laminated plate theory based on the
Kirchhoff's hypothesis is used for modeling
laminated composite plates with thin thickness.
The method of equivalent linearization to account
for material non-linearity in inplane direction is
used for the nonlinear random vibration analysis.
The solutions are obtained using an iterative
approach, where linear random vibration analysis
is performed in each iteration. A computer
program is developed and implemented for the
nonlinear random vibration analysis. Cantilevered
composite laminated plates consisting of three-ply
plates with rectangular geometry and Boron/
Epoxy material are considered in numerical

examples.
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2. NONLINEAR CONSTITUTIVE
EQUATIONS

A uni-directional composite lamina exhibits
significant non-linearity in its shear stress-strain
relations. The in-plane strain-stress law in material
coordinates proposed by Hahn and Tsai (1973) is
adopted in this study. Based on experimental
results, they proposed the following stress-strain

law for in plane stress problems:
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where ¢, and ¢, are normal strain ¢,and o,
stress in the fiber direction, y,, and 7, are the
normal strain and stress in the perpendicular
direction to the fiber direction. and are the
engineering shear strain and shear stress
corresponding to the material coordinates. is the
linear compliance matrix, and the last term on the
right-hand side of (1) represents shear non-
linearities. By inverting Eq. (1), the shear stress-

strain law is:
{0} =[QH &} +1(r12)diag(0,0, )} @

where [Q]=[S]"'is a matrix of elastic
constants and [diag(0, 0, 1)] is the diagonal matrix
with elements 0, 0, 1 diagonally and others are 0
in the matrix. The function, Az, )is the root of
cubic polynomials. Since the exact forms of Ay,)
is complicated and difficult to apply in the finite
element method, it is expedient to approximate it
by

7 .
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By suitable choice of the parameters, a; the

stress-strain law can be made to approximate the
law in Eq. (1) for Ay;,). Figure 1 shows the shear
stress-strain law given by Eq. (1) for Boron/Epoxy
composite material. An approximate fit using Egs.
(2) and (3) with »=2 is shown in Fig. 1 as a
dotted line. The material parameters used were:
Se=1.81x10""m?/N, S"¢=2.08 x10™m°®/N?,
a=—1.558 x10"Pa, a,=2.417x10"Pa. The fifth-
order approximation is satisfactory for strains up
to 0.02. The constitutive equation in terms of

global coordinates can be expressed as

{o}=[ QU+ AL TsHeN T" N &} @

where [Q]=[T7T]1 [T 7 and [7] is a
rotational transformation matrix. [73] is row
matrix consisting of the third row of [7]7! and
[T°1=[T1"" [diag(0,0, DI[ 71~ " and A[T3}e})
=fAyp) in Eq. (4).

3. FINITE ELEMENT FORMULATION

A four-noded isoparametric element with five
degrees-of-freedom (DOFs) at each node is used
together with the Kirchhoff’s assumed displacement
field. The in-plane and out-of-plane displacements
are interpolated through [uy, 0, 17=[N, fu.}
and wy,=[N, Ku,}, in which {s,} are the element
nodal DOFs. The shape functions [N;] are
defined in the natural {¢, 7} coordinate system as
bilinear functions, [N,] and are non-conforming
shape functions developed by Zienkiewicz and
Cheung (1964). Using the energy approach, the
stiffness equations for a plate element consisting N

layers can be derived in the form:

(P)=[K.Hut+{4 .} ©)

where [K,] is the linear stiffness matrix, and
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is a nonlinear load vector. The dynamic equation

of motion of the complete system is
[MI{w+ [ CH+[ Kl +{ 8} ={P} @

where [M] and [K] are the system mass and
stiffness matrices assembled from element
matrices, [C] is the damping matrix, {4} is a
vector of nonlinear terms, and {P} is the external

force vector.

4. EQUIVALENT LINEARIZATION

Approximate nonlinear random  vibration
analysis may be performed using the method of
equivalent linearization. In this method, the
nonlinear equation of motion given by Eq. (7) is

replaced by an equivalent linear one
[M]{u}+ [CHad+ ([K]+ LK D{u} = {P} )

where [K"] is the equivalent stiffness matrix
determined by minimizing the magnitude of the
error vector {e}={¢}—[K Hu). Assuming that
{P} and {«) are zero-mean Gaussian random
vectors, it can be shown that the equivalent

stiffness matrix as:

[K*]zE[ ©)

5t

The matrix [K"] may be assembled through

equivalent element stiffness matrices given by

2 z;
(K1= 2 e[ [ [ BT B Ay )] dedns

(10)

5. RANDOM VIBRATION ANALYSIS

Random vibration analysis to solve Eq. (8) is
performed using an iterative approach, with each
iteration consisting of a linear analysis. The matrix
[K"] in any given iteration is computed using
the nodal displacement covariances from the
previous iteration, and the iterations are
terminated when the covariances converge. The
steps required in a frequency domain analysis are

as follows:

1. Using the stiffness matrix [K]+[K"] with
[K*1=[0]in the very first iteration and
mass matrix [M], determine the frequencies
w;, and mode shapes {¥;} for a chosen
number of modes.

2. Perform a linear random {« } vibration analysis
to determine the covariance matrix of the
nodal displacements . The rsth element of the
covariance matrix is given by

Huul=3 32l & 5 gy, [ H(- 0 H(@S(@d
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(11)

where ¥, are elements of the mode shape
matrix, M; is the jth modal mass, H;(w) is the jth
modal frequency response function and S, is the
cross-spectral density function for the excitation
P, and P,. Note that for synchronous loading
only the auto spectra are non-zero. For certain
classes of excitation spectra, closed-form solutions
can be used to rapidly compute the integrals in
Eq. (11), while for more general excitations

numerical integration will need to be used.

3. Compute the equivalent element stiffness
[K;]land assemble the global
equivalent matrix [K*]. The three steps

matrices
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outlined above are repeated until convergence
is obtained in covariance of the nodal
displacements. It is convenient to check for
convergence by using the nodal displacement
variances and mth iteration is assumed to have

converged if

\/ Z(Gul,m Ao-u,wM‘l )2
26214,’»4

< tolerance (12)

where, ¢, =V E{ u;u;]
6. NUMERICAL EXAMPLE

The cantilevered three-ply laminated plate is
assumed to be made of Boron Epoxy with elastic
moduli of 205 GPa and 19 GPa in the fiber and
perpendicular to the fiber directions, respectively;
shearing modulus of 6 GPa; mass density of 2000
kg/m’ n = 2 in Eq (3); and the first two
coefficients on the RHS of Eq. (3) being «,=
—1.558 10" Pa and a,=2.417x10% Pa. A ply
arrangement with fiber orientations of ¢, 0° and
-¢ in the top, middle and bottom layers
respectively, is used. Two values of ¢, 30° and 60°
are used for comparative purposes. Each layer is
modeled with nine elements of equal size as
indicated by the dashed lines and the element
numbers. The four nodes at the free end of the
cantilever are loaded with identical zero-mean
white noise excitations. The level of the excitation
spectrum Sy, is increased and the root-mean-
square (RMS) displacement, strain and stress
responses are computed as the level of the
excitation spectrum, Sy, is raised. Two types of
loading conditions are examined. For the
comparable purpose, the responses are normalized
by dividing by the linear response, which is
obtained at the end of the first iteration.

6.1. Three-ply laminated plate loaded
in shear direction

The cantilevered three-ply laminated plate
shown in Fig. 2 is considered. The loads are
applied along the in-plane DOF in the y-direction.
The level of the excitation spectrum S, was
increased from 5000 to 30000 N’sec. Table 1 shows
the first five undamped natural frequencies from
linear and nonlinear analysis of three-ply
laminated plate for the load spectrum level
530000 N’sec. Due to the softening effect of
shear non-linearity, the natural frequencies show
about 3 to 7% decrease. The plate with ¢=30" is
stiffer than the plate with ¢=60" as indicated by the
higher natural frequencies. Fig. 4 shows the variation
of the absolute RMS shear strain in material
coordinates at the center of element 2 with excitation
level. The responses are nonlinear. The effect of
non-linearity is comparable for both the [30° /0°
/-30"] and the [60° /0" /-60° ] laminated plates. The
variation of the normalized RMS displacement at
free corner nodes with excitation intensity is shown
in Fig. 5. There is a steady increase in displacement
with excitation spectrum level due to the effect of
the non-linearity. The fifth order approximation is
not applicable for the [60° /0° /-60"] laminated
plate at levels above 20000 N’sec.

6.2. Three-ply laminated plate loaded
in flexure

The same cantilever plate used in the in-plane
shear loading is considered. However the
out-of-plane DOF in the z-direction are loaded.
The excitation intensity is increased from 0 to 80
N’sec. The variation of the absolute shear strain in
material coordinates at the center of element 2
with excitation intensity is shown in Fig, 6 and the
responses are clearly nonlinear. For any given
excitation level, the shear strain for the [60° /0°
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/-60°] laminated plate is significantly less than
that for the [30° /0° /-30°] laminated plate. The
variation of the normalized RMS z-displacement of
the corner nodes with excitation spectrum level is
shown in Fig. 7. The effect of non-linearity is less
pronounced for the [60° /07 /-60°] laminated
plate than for the {30° /0° /-30°] laminated plate.
This is because the smaller shear strains in the
former case reduce the overall level of
non-linearity. The variation of normalized RMS
shear and normal stresses in material coordinates
at the corner of element 2 with excitation intensity
is shown in Fig. 8. The non-linearity in the
constitutive law results in a significant increase in
the shear and normal stresses for the [30° /0
/-30°] laminated plate compared with the results
from the [60° /0" /-60" ] laminated plate.

7. CONCLUSION

A general formulation for the nonlinear random
vibration analysis of laminate plates modeled
using finite elements and Kirchhoff plate theory is
presented. An approximate representation of the
nonlinear shear stress-strain law in terms of a fifth
order polynomial results in a tractable formulation
that is sufficiently accurate for practical purposes.
The solution is performed iteratively using linear
random vibration analysis during each iteration.
The numerical examples presented indicate that
the effect of non-linearity on the responses for any
give excitation intensity depends on the ply-
arrangement and as expected becomes more

significant for higher excitation intensities.
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(Fig. 1) Fit of approximate shear stress-strain
law

(Fig. 2> Three-ply laminated plate loaded
in shear

(Fig. 3) Three-ply laminated plate loaded
in flexure
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(Table 1) First five natural freguencies from

linear and nonlinear analysis for
the load level $,=30000 N?sec
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[30° /0" /307 ] [60° /O /-60° ]
Mode | pigt Last First Last
Tteration | Iteration | Iteration | Iteration
1 234 Hz 21.8 Hz 180 Hz | 17.7 Hz
2 81.6 Hz 79.7 Hz 653 Hz | 640 Hz
3 1016 Hz | 1004 Hz | 807 Hz | 78.1 Hz
4 1479 Hz | 137.7 Hz | 1100 Hz | 106.6 Hz
5 2613 Hz | 2536 Hz | 2153 Hz | 2133 Hz
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