ON GENERALIZED HAMMING WEIGHTS OF CYCLIC LINEAR CODES GENERATED BY A WEIGHT 2 CODEWORD II

Abstract

Mi JA Yoo

Absthact We find the generalized Hamming weights of cyclic hnear q-ary codes which are generated by a codeword of weight 2 , and of any length.

1. Introduction and preliminaries

This paper is a continuity of $\{1]$. Let F_{q} be a field with q elements. A code is simply a linear subspace C of F_{q}^{n}. The elements of a code are called codewords, the integer n is called the length of the code. An $[n, k]_{q}$-code means the code of length n, and of dimension k. In [3], Wei introduced the notion of generalized Hamming wenghts and weight hierarchy for a linear code, which has been motivated by several applications in cryptography. Let C be an $\{n, k]_{q}$ code. The weught $w(c)$ of a codeword $c=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ is defined by $w(c)=\operatorname{card}\left\{2 \mid c_{2} \neq 0\right\}$ The weight $w(D)$ of a subcode D of a code C is defined by

$$
w(D)=\operatorname{card}\left\{i \mid c_{2} \neq 0 \text { for some } c \in D\right\}
$$

'The generalnzed Hamming weights of C are defined as

$$
d_{r}(C)=\min \{w(D) \mid D \text { is an } r \text {-dimensional subspace of } C\}
$$

This work was supported by Korea Research Foundation Grant (KRF-99-005D00003).

Received November 12, 2000 Revised June 5, 2001
2000 Mathematics Subject Classification. 94B05, 51E20, 05B25
Key words and phrases linear code, cychc code, generalized Hamming weight
for $1 \leq r \leq \operatorname{dim} C$. The weight hierarchy of a linear code C means the set of generalized Hamming weights $\left\{d_{\tau}(C) \mid 1 \leq r \leq \operatorname{dim} C\right\}$. Also it has been shown in [3] that the weight hierarchy of a linear code completely characterizes the performance of the code on a type II wiretap channel. Here $d_{1}(C)$ is just the minimum distance of C which is one of important parameters of a code C.

The following are well-known facts on the generalized Hamming weights.

Theorem 1.1 (Monotonicity) [3]. Let C be an $[n, k]_{q}$-code, then

$$
1 \leq d_{1}(C)<d_{2}(C)<\cdots<d_{k}(C) \leq n .
$$

Theorem 1.2 (Duality) [3]. Let C be an $[n, k]_{q}$-code and let C^{\perp} be the dual code. Then
$\left\{d_{r}(C) \mid 1 \leq r \leq k\right\}=\{1,2, \cdots, n\}-\left\{n+1-d_{r}\left(C^{\perp}\right) \mid 1 \leq r \leq n-k\right\}$.
A matrix G is called a generator matrix of a code C if its rows form a basis of C. Two codes C_{1} and C_{2} with generating matrices G_{1} and G_{2}, respectively, are called equvvalent if G_{1} can be transformed into G_{2} by elementary row operations, by permuting the columns of G_{1} and by multiplying the columns of G_{1}, by nonzero scalars.

Remark. Let C_{1} and C_{2} be $[n, k]_{q}$ codes. If two codes C_{1} and C_{2} are equivalent, then $d_{r}\left(C_{1}\right)=d_{r}\left(C_{2}\right)$ for $1 \leq r \leq k$.

A code C is said to be cycluc if $\left(c_{1}, c_{2}, \cdots, c_{n-1}, c_{0}\right) \in C$ for any $\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$. A cyclic code C is said to be generated by a codeword c if C is the smallest cyclic code containing c. In this paper, we find the generalized Hamming weights of a cyclic code C which is generated by single codeword of weight 2.

Consider a natural vector space homornorphism

$$
\phi: F_{q}[x] /\left(x^{n}-1\right) \longrightarrow F_{q}{ }^{n}
$$

defined by

$$
\phi\left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left(x^{n}-1\right)\right)=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) .
$$

Using this map we obtain the following theorems.

THEOREM 13 [2] There is an one-to-one correspondence between cycluc codes of length n and the ideals of $F_{q}[x] /\left(x^{n}-1\right)$. Moreover, there is an one-to-one correspondence between cyclac codes and the factors of $x^{n}-1$.

THEOREM $1.4\{1\}$ Let C be a cycluc code of length n generated by a codeword $\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$. Then C corresponds to the ideal in $F_{q}[x] /\left(x^{n}-1\right)$ generated by $g(x)+\left(x^{n}-1\right)$, where $g(x)=g c d\left\{c_{0}+\right.$ $\left.c_{1} x+\cdots+c_{n-1} x^{n-1}, x^{n}-1\right\}$.

Each cyclic code C of length n corresponds to the unique polynomial $g(x)$, a divisor of $x^{n}-1$. We call this polynomial $g(x)$ the generator polynomıal of the cyclic code C. More precisely, if $g(x)=a_{0}+a_{1}+$ $\cdots+a_{l-1} x^{l-1}+x^{l}$, then the cyclic code C is generated by the rows of the matrix

$$
\left(\begin{array}{ccccccccc}
a_{0} & a_{1} & a_{2} & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & a_{0} & a_{1} & \ldots & a_{l-1} & 1 & 0 & \ldots & 0 \\
0 & 0 & a_{0} & \ldots & a_{l-2} & a_{l-1} & 1 & \ldots & 0 \\
& & & \ddots & & & & \ddots & \\
0 & 0 & 0 & \ldots & a_{0} & a_{1} & a_{2} & \ldots & 1
\end{array}\right)
$$

2. Main Remarks

We use the following lemmas to prove our main theorem.
LEMMA $21[1]$ Let C be a cycluc code with the generator matrix G

$$
G=\left(\begin{array}{c|c}
& \left.\left\lvert\, \begin{array}{c}
I_{l} \\
\\
I_{l(a-1)} \\
\\
\\
\\
\\
\\
\\
\\
I_{l} \\
I_{l}
\end{array}\right.\right)_{l(a-1) \times l a}, \\
& \\
& \\
& \\
& \\
\end{array}\right.
$$

where the integers $a, l \geq 2, I_{k}$ denotes the $k \times k$ identaty matrix. Then

$$
d_{r}(C)=r+\left[\frac{r}{a-1}\right\rceil \text { for } 1 \leq r \leq l(a-1)
$$

Let C be a cyclic code of length n with the generator polynomial $g(x)=x^{l}-\alpha$. We will prove that a generator matrix of C is equivalent to the matrix in Lemma 2.1.

LEMMA 2.2 Let C be a cyclic code of length n with the generator polynomial $x^{l}-\alpha$, where $\alpha \in F_{q}$. Then
(1) If i is the order of α, then n us a multzple of $i l$.
(2) A generator matrix G^{\prime} of C is
where $m=\frac{n}{v l}$.
Proof (1) Let $n=l d+r$ with $0 \leq r \leq l$. Then

$$
\begin{aligned}
x^{n}-1 & =x^{l d+r}-1 \\
& =\left(x^{l}\right)^{d} x^{r}-1 \\
& =\left(x^{l}-\alpha+\alpha\right)^{d} x^{r}-1 \\
& \equiv \alpha^{d} x^{r}-1\left(\bmod x^{l}-\alpha\right)
\end{aligned}
$$

Since $x^{l}-\alpha$ is the generator polynomial of C and $r \leq l, \alpha^{d} x^{r}-1=0$. Hence $r=0, \alpha^{d}=1$. On the other hand, the order of α is i and so d is a multiple of i. Therefore n is a multiple of $i l$.
(2) Since $x^{l}-\alpha$ is the generator polynomial of C and a generator $\operatorname{matrix} G$ for C is

$$
\left(\begin{array}{ccccccccc}
-\alpha & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & -\alpha & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & -\alpha & \ldots & 0 & 0 & 1 & \ldots & 0 \\
& & & . & & & & \ddots & \\
0 & 0 & 0 & \ldots & -\alpha & 0 & 0 & \ldots & 1
\end{array}\right)
$$

where the number 1 is in the $(l+1)$-th place in the first row. We perform the following elementary row operation on the matrix G;

$$
v_{3}^{\prime}=v_{3}+\alpha^{-1} v_{J+l}+\left(\alpha^{-1}\right)^{2} v_{3+2 l}+\cdots
$$

for each $\jmath=1,2, \cdots, n-2 l$, where v_{\imath} denotes the i-th row of G. Then we obtain another generator matrix G^{\prime} whose rows are v_{3}^{\prime};

$$
G^{\prime}=\left(\begin{array}{c|c}
& \left(\alpha^{-1}\right)^{2-2} I_{l} \\
& \left(\alpha^{-1}\right)^{2-3} I_{l} \\
& \vdots \\
& \vdots \\
-\alpha I_{(i m-1) l} & \left(\alpha^{-1}\right)^{2-1} I_{l} \\
& \vdots \\
& I_{i} \\
& \vdots \\
& \left(\alpha^{-1}\right)^{2-1} I_{l} \\
& I_{l}
\end{array}\right]_{(2 m-1) l \times(m l}
$$

Lemma 23 The followng two matrices G and $G^{\prime \prime}$ are equivalent

$$
\begin{aligned}
& G^{\prime \prime}=\left(\quad \alpha I_{l(a-1)}\right. \\
& \left.\left\lvert\, \begin{array}{c}
\alpha_{1} I_{l} \\
\alpha_{2} I_{l} \\
\vdots \\
\alpha_{a-2} I_{l} \\
\alpha_{a-1} I_{l}
\end{array}\right.\right)_{l(a-1) \times l a,}
\end{aligned}
$$

where $\alpha, \alpha_{2} \in F_{q}$, the integers $l, a \geq 2$.

Proof We perform the following elementary row operation on $G^{\prime \prime}$;

$$
\begin{gathered}
v_{j}^{\prime}=\alpha_{1}^{-1} v_{j}^{\prime \prime} \text { for } 1 \leq j \leq l, \\
v_{j}^{\prime}=\alpha_{2+1}^{-1} v_{j}^{\prime \prime} \text { for } \text { il }<j \leq(i+1) l,
\end{gathered}
$$

for each $i=1,2, \cdots, a-2$, where $v_{i}^{\prime \prime}$ denotes the i-th row of $G^{\prime \prime}$. Then we obtain the generator matrix G^{\prime} whose rows are v_{j}^{\prime};

$$
G^{\prime}=\left(\begin{array}{cccc:c}
\alpha_{l}^{-1} \alpha I_{l} & & & & I_{l} \\
& \alpha_{2}^{-1} \alpha I_{l} & & & I_{l} \\
& & \ddots & & \vdots \\
& & & \alpha_{a-1}^{-1} \alpha I_{l} & I_{l}
\end{array}\right)_{l(a-1) \times l a}
$$

Once more, we perform the following elementary column operation on the matrix G^{\prime};

$$
\begin{gathered}
w_{j}=\alpha^{-1} \alpha_{1} w_{j}^{\prime} \text { for } \quad 1 \leq j \leq l \\
w_{j}=\alpha^{-1} \alpha_{2} w_{j}^{\prime} \text { for } \text { il }<j \leq(i+1) j,
\end{gathered}
$$

for each $i=1,2, \cdots, a-2$, where w_{j}^{\prime} denotes the j-th column of G^{\prime}. Then we obtain the generator matrix G whose columns are w_{j};

$$
G=\left(\begin{array}{c|c}
& \left.\left\lvert\, \begin{array}{c}
I_{l} \\
I_{l(a-1)} \\
\\
\\
\\
\\
\\
\\
I_{l} \\
I_{l}
\end{array}\right.\right)_{l(a-1) \times l a} . \\
& \\
& \\
& \\
& \\
& \\
\end{array}\right.
$$

Theorem 24. Let C be a cyclic code of length n generated by weight 2 codeword ($c_{0}, c_{1}, \cdots, c_{n-1}$) with $c_{s}=-\beta, c_{t}=1$ for $s<t$. Then the generalized Hamming weights of C are as follows;

$$
d_{r}(C)= \begin{cases}r+\left\lceil\frac{r}{a-1}\right\rceil & \text { for } 1 \leq r \leq l(a-1) \text { or } \\ r, & \text { for } 1 \leq r \leq n,\end{cases}
$$

where $l=g c d\{t-s, n\}, a=\frac{n}{l}$.

Proof By the definition of cyclic code, we may assume that (c_{0}, c_{1}, \cdots, c_{n-1}) where $c_{0}=-\beta, c_{j}=1$ and $j=t-s$. By Theorem 1.4, C corresponds to the ideal of $F_{q}\left[x_{1}\right]\left(x^{n}-1\right)$ generated by $g(x)=$ $\operatorname{gcd}\left\{x^{j}-\beta, x^{n}-1\right\}$. Let $n=j d+r$ with $0 \leq r \leq j-1$. Since

$$
\begin{aligned}
x^{n}-1 & =x^{\jmath^{d+r}}-1 \\
& =\left(x^{3}-\beta+\beta\right)^{d} x^{r}-1 \\
& \equiv \beta^{d} x^{r}-1\left(\bmod x^{\jmath}-\beta\right) \\
& \equiv x^{r}-\beta^{-d}\left(\bmod x^{\jmath}-\beta\right)
\end{aligned}
$$

by Euclidean Algorithm, we see that $\operatorname{gcd}\left\{x^{3}-\beta, x^{n}-1\right\}$ is $x^{l}-\alpha$ or 1, where $\alpha \in F_{q}, l=\operatorname{gcd}\{y, n\}$. Hence the generator polynomial $g(x)$ of C is $x^{l}-\alpha$ or 1 .

Case 1. If $g(x)=1$, then $d_{r}(C)=r$ for $1 \leq r \leq n$.
Case 2. Let $g(x)=x^{l}-\alpha$ and let i be the order of α. Then by Lemma 2.2, $n=i l m$ for some integer m and a generator matrix G for C is

$$
G=\left(\begin{array}{c|c}
& \left(\alpha^{-1}\right)^{2-2} I_{l} \\
& \left(\alpha^{-1}\right)^{2-3} I_{l} \\
& \vdots \\
-\alpha I_{(v m-1) l} & I_{l} \\
& \left(\alpha^{-1}\right)^{2-1} I_{l} \\
& \vdots \\
& I_{l} \\
& \vdots \\
& \left(\alpha^{-1}\right)^{2-1} I_{l} \\
& I_{l}
\end{array}\right)_{(i m-1) l \times i m l}
$$

By Lemma 2.3, the generator matrix G for C is equivalent to the
following matrix G^{\prime};

$$
G^{\prime}=\left(\begin{array}{c|c}
& \left.\left\lvert\, \begin{array}{c}
I_{l} \\
I_{l} \\
I_{(\imath m-1) l} \\
\\
\\
\\
\\
\\
\\
I_{l} \\
I_{l}
\end{array}\right.\right)_{(\imath m-1) l \times l a} . \\
& \\
& \\
& \\
& \\
& \\
& \\
\end{array}\right.
$$

Puting $a=i m$, by Lemma 2.1 we obtain

$$
d_{r}(C)=r+\left\lceil\frac{r}{a-1}\right\rceil \text { for } 1 \leq r \leq l(a-1)
$$

REfERENCES

[1] S J Kım and M J Yoo, On Generalized Hammang weights of cycluc linear codes generated by a weught 2 codeword, Pusan Kyongnam Math 12 (1996), 155-162
[2] R.F. Lax, Modem Algebra and Descrete Structures, Harper Collins Publishers Inc., 1991
[3) V.K. Wei, Generalazed Hamming weights for linear codes, IEEE Trans. Inform Theory 37 (1991), 1412-1418

Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea

