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GAUSS SUMMATION THEOREM 
AND ITS APPLICATIONS

Hyung Jae Lee, Young Joon Cho and Junes an g Choi

Abstract The Gauss summation theorem plays a key role m the 

theory of (generalized) hypergeometnc senes The authors study sev

eral proofs of the theorem and consider some applications of it.

골. Introduction and P reliminaries

The generalized hypergeometnc function [9, p. 7이 with p numerator 
and q denominator parameters is defined by

(1-1)
Q]). - . , Cyp j

pFq Z = Qp； 01, • , 0q； Z)
01 ? • , • 7 Pq〉

一 S' (%)m . . . (%)n 干
— 스 (月1)… • 饱)n "

where (a)^ denotes the Pochhammer symbol (or the shifted factorial, 
since (l)n = n!) defined, for any complex number a, by

/ 、 /、 f 1 (n = 0)(1.2) (a}:— < 、 )
71 I a(a + 1) ... (a 4- n — 1) (n € N := {1, 2, 3,... }),
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which can also be rewritten in the form:

(L3)
r(a + n)

where r is the well-known Gamma function whose Weierstrass canon
ical product form is

(1.4)
曰=득遗仙葺广"

7 being the Euler-Mascheroni constant defined by

(1.5) ,:= 噪 (文"—log n) 으 0.577215 664901532. .

With the notation (1.1), the Gaussian hypergeometric series is 2-^1? 
which is also denoted simply by F.

The Beta function B(a, /3) is a function of two complex variables a 
and 0)defined by
(1.6) ]
B(a, /3) := [ ta~\l - i)^1 dt = a) 顷(q) > 0 ;轮«3) > 0). 

Jo

The Beta function, is closely related to the Gamma function as follows:

(L7) B(%0) = 譬뽀票 (q,/3^0,-1, -2,...),
「(a + 仞

which not only confirms the symmetry property in (1.6), but also con
tinues the Beta function analytically for all complex values of a and 
except when q, /? = 0, —1, —2,....

Gauss proved the following useful theorem:

[«, 3; ] r(c)r(c-a-d)
(L8) c; r(c - a) r(c — b)

(况(c — a — b)>0; c ---- —2, • • •), 
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which plays a vital role in the theory of the generalized hypergeomet- 
ric series pFq as well as in 2-^1 and is usually referred to as Gauss 
summation theorem.

In this note we aim at reviewing several methods of proofs of (1.8) 
including Gauss's original proof and considering some applications of 
it.

2. Proof of (1.8)

For Gauss's proof of (1 8), we begin by recalling AbePs theorem:

Theorem 2 1 Let 二()dnzn be a power senes, whose radtus of 
convergence %s umty, and let it be such that £：辭=()converges^ and 
let 0 < x < 1. Then

lim
8

> a…
n=0

Note also (see [6, p 47]) that for sufficiently large z,

(2.1) 泌一 a

The hypergeometric series 2■尸b; c; x) converges absolutely for 
$R(c — a — ft) > 0 and c * 0, —1, —2, ... , on the radius of convergence 
\x\ = 1. It is a routine work to verify, by considering the coefficient of 
xn in the variable, that if 0 < rr < 1, then

c{c — 1 — (2c 一 q — b — l)x}F(a, 6 ; c , x) + (c — a)(c 一 b)xF(a^ b ; c + 1 ; w) 
=c(c — 1)(1 一 x)F(a1 b ; c — 1 ; j:)

' 00
=c(c - 1)〈 1 + - un^i)xn

、 n=l

where un is the coefficient of xn in 6 ; c — 1 ; x).
Now make z T L By Theorem 2.1, the right-hand side tends to 

zero if 1 + 一 ^n-i) converges to zero, i.e., if un —> 0, which
is the case when 况(c — a — 6) > 0.
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(c 二으+ ”)(cT，+ 2 F(a? fe.c + m;1)

Also, by Theorem 2.1, the left-hand side tends to
c(a + b ~ c)F(a, b ; c , 1) + (c — a)(c — 6)F(a, 6 ; c + 1 ; 1) 

under the same condition, and therefore

F/, b ; c ; 1) =厂..一으)项㈤ 6 ; c + 1 ； 1).
c\c — a — o)

Repeating this process, we see that

{
m—1， 、

卩(c 4 n)(c a - b I- n)

=[临 TI .c- 十)(c _* > 
[mT8 ** (c + n)(c — a~ b + n)

if these two limits exist.
For the former limit, if c is not a negative integer, using (2.1), we 

have

lim F(a, b ; c + rrt m—>oo

n(c — a + n)(c — b + 7i) _ (c — a)m(c — b)m
(r r).Wr — n. 一 h -4- r>\ m!꽀c ((r- — a. — 7八一__

■ma I 1 + 0

lim
血-*50 (c + n)(c — a — b + n) m->oo (c)m(c — a — 6)m

—r(c)r(c — a ~b) ], r(c ~ a + m)r(c — b + m) 
r(c — a)r(c — b) m—8 r(c + m)r(c — a — 6 + m)

= 罪똑3으二쏴 Um m- (1 + 0
I (c — a)L (c 一 b) m->oo y
r(c)r(c — a — 6)
r(c — a)r(c — 6).

On the other hand, if *un(a, 6, c) is the coefficient ofxn in F(a, d ; c; a;), 
and m > |c|, we have

oo
成(a, bc + m l)-l|<y^ |un(a, b, c + m)\

n=l
oo

< £s(|이, I이, m— |c|)|
n=l

< L m ^n(|^| + 1, ]&| + 1, m + 1 — |c|).

''n=0



GAUSS SUMMATION THEOREM 151

Now the last series converges, when m> \c\ + \a\ + \b\ + 1, and is a 
positive decreasing function of m; therefore, since {m — jc]}"1 —> 0, we 
have

hm 6 ; c + zn ; 1) = 1; m—>oo

and therefore, finally, the Gauss's proof of (1 8) is complete.
Secondly, we have the following known integral representation for 

2F1 (see [6, p. 114]):
(2.2) .

2g b； C； 2)=島、j； L (1 - (1 -"膈

(况(c) > 3?(a) > 0; I arg(l - z)\ < %)

which, upon setting z — 1 and considering (1.7), immediately yields
(1.8) mcludingjts restrictions without aiiy alteration.

The Riemann-Liouville fractional integral of f order v is defined, for 
况(“)> 0, by

(2.3) ok f(t) ：= f糸 /"泸” J卷)吹(t > 0),

where f is piecewise continuous on (0,00) and integrable on any finite 
subinterval [0,00) (see [8, p.45]).

Unless there is any possibility of ambiguity, the notation will be 
simplified by dropping the subscripts 0 and t on 頑「匕

The Leibniz formula for fractional integrals is recalled here (see [8, 
P・75]):
(2-4) 8

[/(t)g(划=五 C) [Dkg(t)] [D—k /(<)] (p > 0; 0 < t < X),

where f is continuous on [0, X], and g is analytic at a, for all a e [0, X].
To prove (1.8), we start with the trivial identity

(2.5) pH =3卩(t > o).
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Now for 〃 > 0 and A + > —1,

Di t사任 =(2-6)
I?(入+ n + 1) A+kE 

r(A + 尹 + 〃 +1)

We 아lall show that if A, > 0, we may apply Leibniz5s formula (2.4) 
to the product of /(t) = tx and g(t)=护.This result may then be 
compared with (2.6) to establish (1.8).

We begin, in virtue of the binomial theorem (3.4), by expanding 
g(£) in powers of (f — t) as follows:

g(g) = F = [t +任一切产

(2-7)

Considered as a power series in (g — t)/£, the radius of convergence is 
1. Using Raabe's test we see that the series converges absolutely for

E — t =±1.

Furthermore, it converges to g七 Since 

for all (6 — Z)/£ in [—1,1], the Weierstrass M-test implies that the con
vergence is uniform in the closed interval [—1,1]. Thus (2.7) converges 
uniformly for g €

Therefore, it follows that

(2.8) D~u [P e]=舟(-l)fc 晋詩[Dk tA] [D~v~k 出]
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is valid for z/ > 0, i > 0, A, /z > 0. Thus

TL rfA =十人+卩危+ 1) 「(一人 + *)「(" + &) 1
L J — f(^A)r(z/)스 r(/i + y + fcfc!

= g서w+u 「s+1)
「(/£ + 丄丿 + 1)

2灰(—入，1/ ； /I + P + 1 ； 1).

If we equate this result to (2.6), we obtain

/9 Q\ r(A + // + 1) r(/z + 1) 口(、 丄 丄1 1、
(迎)页\标+，+ 1)=瓦习仄口)见(1'"危+ 1，I、

In more conventional notation let a = —A, 6 — — + Then
(2.9) becomes (1.8) for

(2.10) a<0, c - 1 > 6 > 0.

Thus they have established (1.8) only under the more restrictive con
ditions of (2.10) (see [8, pp.77-7이).

3. Applications

The Riemann Zeta function <($) (see [10, pp.265-280]) is defined by 
(3.1)

8 ] ] 8 1
_ 1 - 2~s £ (2n - l)s

n=L n=l、 7

°° (-1尸T 

ns

C(s)：=
I I十 £
I 71=1

顷(s) > 1)

(况(s)〉0; s 쿠4 1).

Since the time of Euler, there have been many methods of proof of 
C(2n) (n e N) (c/. [3, 5]). We can also evaluate <(2) by using (1.8). 
Consider the following integral

(3.2) §(arcsmz)2 =[
2 Jo

■X arcsin t dt.
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We can expand arcsin t in powers of t as follows:

. I* &U I . 2 \ 一 i j
arcsm t = I —' "— 3 = / (1 一 队)* 2

2n + 2 Z： (n + 2)以！

孙+2
=k , 2Fx(l/2,n + l； n + 2; x2).乙II "1 '厶

Taking the limit as x 1 on (3.5) and using (1.8), we obtain

广 1 ^2n+l ]
L ▽『次= E2H(l/2，”+l；n + 2；l)

= 1 P(n + 2)「(l/2)
2 + 2 r(7z + 3/2)

Jo v 1 — u2 Jo
rt 8

?z2)n du(3-3)

n! 2n + 1

"u n=o
宁、(l/2)n t2n+1 zi.i /

= X-n!- 2n+1 (I히＜1)， 
n=0

where we have used termwise integration and the binomial theorem:
OO OO / \

(3-4) (1—= £ (_/” = £ 뽀 孝 (园〈1).
71=0 n=0

Similarly as_in_(3.3)= weJiave

V(l/2)fc :舟+2“ 
_ J —fc! —2fc + 2n + 2 

fc=0 

fc=0 
1

(1/2)左 r(fc + n+ l)^2fc+2n4-2
fc! r(fc + n + 2)

°° (l/2)fc(n+l)fcj戶 2#：+2冗+2

(3 5)

(3-6)
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Combining (3.3), (3.5), and (3.6) into (3.2), and setting x — 1 m 
the resulting identity, we obtain

W) -

which, in view of (3.1), yields

8 1 q
(3・8) 〈⑵=£夢=另・

n=l

The Gauss summation theorem (1.8) may seem to have lots of ap
plications in evaluations of some types of definite integrals. As an 
illustration, we consider the following integral (see [4]):

(3.9) IC쯛京 = 丄 ")} '

which was recorded in Gradshteyn. and Ryzhik [7, p 260, Entry 3 139]. 
Indeed,

i

o
dx

、［\ —拼
(T)”

oo

n=0

dx^,3n

rt) 3n + 1

n—0 으/' 3
1

1

8 G)” G)a =2码
1
2

(3.10)
r(i)

Now, recalling the well-known reflection and duplication formulae 
respectively:
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(3.11) r(2)r(l-2)= r으一 and \&T(2z) = 22z~1r(2)r(z+l/2), 
smTtz

we obtain

(3.12)
唯）=縁｛詰疽

Finally combining (3.10) and (3.12) leads at once to (3.9).
For another interesting application, consider the problem which was 

posed by Ananthanarayana Sastri [1, p.80, No.644]:
The length of the fourth positive pedal of a loop of the Lemniscate 

of Bernoulli is given by

18 a
dx
一 a#

where a denotes one half of the distance between two fixed points in 
the definition of the Lemniscate of Bernoulli.

Similarly as above, we evaluate this integral 

(3.13)
x8 dx

Vl — x4
the numerical value of P (1/4) being 3.625 609 908 221 • • •.

Finally, among other things, we conclude this note by showing an 
applicability of the Gauss summation theorem (1.8) to evaluate some 
identities involving binomial coefficients. For example, an interesting 
identity was recorded in [8, p.294, Theorem A.7]:
(3-14)
£ (一1)저 (「) =0 (m = 0, 1, … , n-1; n e N; z/ € C), 

which was proved in an elementary way there. Indeed, the sum (3.14) 
is written in the following equivalent form and may be evaluated by 
using (1.8). Under the restrictions of (3.14),

「(〃) " 1、 r(p)r(n- m) 1 n
MTT------------7 2-Tl(—n, P ； P — m. 1)= 一三------- ------------ --.----- ------- 7 — 0.r(r/ — m) r(z/ — m -\-n) r(—m)
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Note that some families of series involving binomial coefficients can 
easily evaluated by employing the theory of the (generalized) hyperge
ometric series (see [2]).
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