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UNSOLVED PROBLEMS IN BCK-ALGEBRAS

Wikstaw A DUDEK

ABSTRACT We present old unsolved problems on BCK-sequences con-
nected with convex congruences on BCK-algebras We posed also some
new problems on subalgebras

1. Intraduction

Note that a BCK-algebra is an algebra G= (G, -,0) of type (2,0) in
which the following axioms are satisfied.

(1) (zy-z2)- 2y =0,

(2) (z-zy)y =0,

(3) zz =0,

(4) 0z =0,

() zy=yr=0= 2=y,
where (1) means ((x-y) - {z - 2)) - (z-y) = 0. In the sequel dots we usc
only to avoid repetitions of brackets.

The concept of a BCK-algebra was introduced by K. Iséki and S.
Tanaka {cf. {15]) and it is easy to see that a BCK-multiplication zy
generalizes, in particular, the ideal-quotient of comnmutative rings with
unity.

The class of all BCK-algebras do not form a variety (cf. {27]), but
many important subclasses of this class form a variety. A typical ex-
ample is the class of commutative BCK-algebras, 1.e. BCK-algebras

Recerved October 20, 2000 Revised May 16, 2001
2000 Mathematics Subject Classification 06F35, 03(325
Key words and phrases BCK-algebra, BOK-scquence, convex congruence



116 WIESLAW A. DUDEK

with the condition z - zy = y - yz (cf. [25]). Another variety was in-
troduced by B. Bosbach later referred as commutative complementary
semigroups (cf. [1], p.267). This variety was rediscovered by W. H.
Cornish (cf. [5]) who called it the class of BCK-algebras with supre-
mum. This variety contains the class of Brouwerian semilattices (cf.
[1]). Other important varieties of BCK-algebras are the Heyting alge-
bras and MV-algebras of C. C. Chang (cf. {2]).

On any BCK-algebra one can define the natural order < by putting

(6) x <y ifand only if zy=0.
It is not difficult to see that < is a partial order with 0 as the smallest
element. A BC K-algebra G in which for every a,b € G the set

{reG|za<b}

has a greatest element, denoted by a + b, is called a BCK-algebra with
condition (S). Every such BCK-algebra is a commutative semigroup
with respect to the operation + and 0 is its zero element. If it satisfies
also the condition zz - y2 = zy - 2, then it is equivalent to implicative
semilattice (cf. [3] or [21]). Moreover, as proved J. Meng (cf. [20}),
BCK-algebras with condition (S), commutative residual pomonoids
with the identity as the greatest element and implicative commutative
semigroups are categorically equivalent to each other.

As a simple consequence of the above system of axioms we obtain

(7) 0 ==z,
(8) xy-z==2 -y,
(9) (= zy) = zy,

(10) z <y implies zz < yz and zy < zz.

An important role in the theory of BCK-algebras and related sys-
tems play ideals defined as a subset I of G suchthat0 € Jand y,zy €
imply & € I. Such ideals are ideals in the sense of ordered sets, i.e.
z <yand y € I imply z € I. Note that such defined ideals (called
also BCK-ideals (cf. [12])) can be characterized {cf. [9]) as subsets I
with 0 such that zy,y(yr-2) € [ forally € G and z,z € 1.
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2. Convex cangruences

Convex congruences have been successfully used in developing the
theory of partially ordered algebraic systems (cf. [13]} such as partially
ordered groups (cf. [19]) and BCK-algebras (cf. [23], [24]).

A congruence © on a partially ordered set G is called convez if for
all x,y, 2z € G the following implication holds

(11) x <y < z and (z,z) € O imply (z,y) € O.

Of course, in lattices every congruence is convex. However congru-
ences on BCK-algebras may not be necessarily convex, but in finite
BCK-algebras all congruences are convex {cf. [26]).

We say that a relation ©; defined on a BCK-algebra ¢ is induced
by a subset I C G, if

(z,y) € Oy «= zy, yxr € 1.

A relation induced by an ideal is a congruence, but there are congru-
ences which are not induced by an ideal. In finite BCK-algebras all
congruences are induced by ideals (cf. [12]).

PROPOSITION 2 1 A congruence induced by an ideal 1s convez.

PROOF Indeed, ifz <y<zand (z,2) €Oy thenazy=yz=0€7
and yz = yz-0 = yr.-yz < zz € I by (1) and (6). Hence yz € I. Thus
zy,yz € I and, in the consequence, (x,y) € O;

In {9] the following result is proved.

PROPOSITION 2 2 All congruences of a BCK-algebra, which belongs
to a some vartety, are induced by 1deals.

As a simple consequence of the above results we obtain

PROPOSITION 2 3 If a BCK-algebra belongs to a some variely, then
all ils congruences are convexz.

T. Traczyk proved (cf. [23]) that all congruences of a given BCK-

algebra arc convex if every strongly decreasing sequence of elements of
this BCK-algebra is finite.
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3. n-commutative BCK-algebras

We say that {z} is a BCK-chainif zg > ) and x93 = T TkTr+1
for ail & > 0.

It is not difficult to see that zx > zpyq for all ¥ > 0. If zx = zg+1
for some k, then also z, = z for all n > k. Obviously zx = 0 implies
Zr+1 = 0. In a finite BCK-algebra always there is & < Card({G) such
that z; = x4 for all its BCK-chains.

In connection with this the following problem seems to be interest-
ing.

PRrROBLEM 1. Find the necessary and sufficient condition under which
all BCK-chains of a given BCK-algebra terminate at finite step.

A BCK-algebra G is called an n-commautative if n is a minimal pos-
itive integer such that x,, = x,41 for all its BCK-chains.

4 finite BCK-algebra is n-commutative for some n < Card{G).

T. Traczyk proved (cf. {23]) that the class V,, of all n-commutative
BCK-algebras is a variety and the sequence Vi C Vo C Va3 C ... is
strongly increasing.

To prove this fact, for arbitrary elements z, y of a given BCK-algebra
G, he defined the following two BCK-sequences

To =12, Ty =Y YT, T3 =T0 " ToT1,..., Tk = T2 Lh—2Thk~15---

Yo=19, Y1 =T TY, Y2 = Y0 YoU1,---, Yk = Yk-2  Ye—2Yk—1,-.. and
proved that

(12) zo = 41 = 22 2 W3,

(13) yo 2 21 2 42 > x3 z Y
(see the diagram).

To Yo

x2 Y2

. T3 Y3
In connection with this he posed

PROBLEM 2 Prove or disprove that for any BCK-algebra the se-
quences of inequalities (12) and (13) can be prolonged.

For 3 = y3 we have z3 > 74 and y3 > z4, which shows that in this
case (12) and (13) can be extend to the form zq 2> 41 > zo > y3 > 24
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and yo > 1 > Y2 = Z3 > ys. For z3 = y3 = 0 this extension is infinite.
If 2x = Yk, Tkl = Y41 for some k, then also xpy¢ = yr4s for every
t > 0. This means that in the case x5 = ys, 3 = y3 Lhe sequences of
inequalities {12) and (13) can be prolonged.

But there are infinite BCK-algebras in which the sequences of in-

equalities {12) and (13) can be prolonged to infinite strongly decreasing
sequences.

ExaMpiLe 3 1. Let G = NUAU B, where N = {0,1,2,...}, A=
{anin € N} and B = {b,jn € N}.

On the set ¢ we define the operation * as follows:

form,ne N,

Q if m < n,
M* N = .
m-—n ifm>n,

m*a, =mxb, =0,
by ¥ = bm-&-?n

An ¥ = Gm+n,

0 if n < m,
Gy * Qg = by ¥ by, = .
n-m if n>m,
A ¥ by = Cpy ¥ Ay,

bvn * Qn = bm * bn+1-

One can prove (for detail see [27]) that the set & with this operation

15 a BCK-algebra. Its natural order 1s represented by the following
diagram.

ao bo
a1 by
az by o 2
a3 b3 1
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It is not difficult to see that in this BCK-algebra the pairs of elements
@m,bm, m € N, are incomparable. For all other pairs we have x < y
ory < .

Starting from zg = @m, Yo = bn,, we obtain two infinite BOK-
sequences {zx} and {yx}, where

e — { Gmsk for k = 2n,
*T U bpsr  for k=2n+1,

and
{ by for k = 2n,
Y =

Gmik fork=2n+1

In these sequences for all k € N we have Ty > Yr41 > Ti+2 > Yk+3)
which means that in this case the sequence of inequalities (12) and (13)
can be prolonged. From Lemma 3.2¢ given below it follows that these
inequalities can be prolonged also in the case when elements xg and yo
are compared.

Note by the way, that in this BCK-algebra, the equivalence relation
O corresponding to the partition {N, A, B} is a congruence. Moreover,
N = [0]e is an ideal, but the congruence Oy induced by N has only
two equivalence classes: N and AU B. Thus © # Oxn.

Now we prove some general properties of BCK-sequences.

LEMMA 3 2 Let G be a fived BCK-algebra. Then for every k > 0

() TpTryo = TiTrt1,
(b) T2 = Tk - TuThi2,
(¢} ze =yr+1 o %o < yo.

PROOF Applying (9) to the definition of zx49 we obtain
TxTrt2 = Th(Tr * TuTht1) = TuTi+1,

which gives (a).
(b) follows from (a).
Now, if 2 = x5 < y5 = », then

zo=z=zx0=x 2y =1,
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T1 =Y YT = Yo YoyL = ¥2,

and, by the induction

Tp42 = Tk * TeTht1 = Yk+1 * Yo+1YL+2 = Y13,

which proves (c).

COROLLARY 33 Ifaxg =2 then (12) and (13) can be prolonged.

PRoOOF Indeed. if this case yg > #1 = zg, which by Lemma 3.2¢
gives yp = ) = zg and y3 = Ty = &g - ToT, = Zo. Lhus, by induction,
Ye+1 = T = 2o for all k¥ > 0. This means that (12) and (13} can be
prolonged.

COROLLARY 3 4 In hnearly ordered BCK-algebras the sequences

of inequalities (12) and (13) can be prolonged. Moreover, wn the case
zg < Yo we have

T =N 22 =Y3 2 X4 =Ys5 2 L =Y7 = " 4

and
Yo2 X1 =Y 2 XT3 =Ya 2 Ts =Yg 2 *° -

PROPOSITION 3 5 In commutative BCK-algebras the sequences of
inequalities (12) and (13) can be prolonged.

Proor In commutative BCK-algebras z, = y-y2 = z-zy = , and
Ty =Ty ToxL = x1-T1Z0 = (y-yz)- ((y-yx)z) = (y-yz) (yz-yx) = 21,
by (8), (3) and (7). Simularly we obtain yg = y1 = z;.

Hence 3 = @1 - z12p = @y, Y3 = y1 - Y1y2 = 1 = 71, and, by the
induction zx = xy, = y; = y; for all £ > 1. This proves that the
sequences of mmequalities (12) and (13) can be prolonged.

Thus the Traczyk’s problem can be reformulated as.

ProBLEM 3 Prove or disprove that in non-commutative BCK-

algebras the sequences of inequalities {12} and {13) with incomparable
starting elements can be prolonged.
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PROPOSITION 3 6 If (12) and (13) can be prolonged, then i = yx
wmples Teion = Ypton for every n > (.

PROOF. The proof is based on the following inequality

(14) zy z2z < z(z - zy),

which holds in all BCK-algebras.
To prove it observe that, by (8) and (9), in all BCK-algebras we

have
zy-xz=z(x-z2y) 2= (z-22) (z zy}.

Hence

(2y-22) -2z - 2y) = (¢ 22) - (- 2p)) - (e - 20)

= ((z(z(z - 2y))) - (- 2y)) - 22 by (8)
=((z-2y)- (z-zy)) 22 by (9)
= ((z(z - zy) - 2y) - 22 by (8)

=(zy-zy)-zz={zy-z2)-2y =0 by (9),(8),(1)
which completes the proof of (14).

Now, if &, = y for some fixed k, then

Tr+2Yk+2 = (Tk - TiZrs1) Yk - YkY+1)
= (T TpZrs1 )Tk - Talr1)

= (@ (Tk * ThYr+1)) (TaTrr1) by  (8)

= (@r¥r+1)(ZxTir1) by (9)

= (TrYr+1)(TaTrio) by  Lemma 3.2¢
< zp{zr - Trroyes1) =0 by  (14),

because of the assumption zg19 < yry1. Thus zxre < yrao.

By the symmetry we obtain the inverse inequality. Hence zj,., =
Yr+2, and, by the induction, Zx 2, = yky2n for every natural number
n. This completes the proof.
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PROBLEM 4 Find the necessary and sufficient conditions under

which the sequences of inequalities {(12) and (13) terminates at finite
step.

As it is well known that in any BCK-algebra one can define a new
operation A by putting z Ay = z - zy. It is clear that z Ay < = and
zAy <y, bul mgeneral zAy#yAz. Also (zAy)AzF# T A{YyAz).

Using this operation, we can define a BCK-sequence as a sequence
{Zxy2}, where zo = «, yo = y are given, z; = y Az, ¥ = Ay and
Tpt2 = T ATy for all k 2> 0.

T. Traczyk proved (cf. [23]) that the variety V) coincides with the
variety of all commutative BCK-algebras. This variety is uniquely
determined by the identity z; = 4, i.e by the identity yAz =z A y.
The variety V5 is determined by 2y = ¥, 1 e. by the identity zA(yAz) =
y A (z Ay), which 1s known in the literature as the Cornish’s condition

SyY o Taln
{J/ (et 14)).

The problem of V3 is open. But some known results suggest that
this variety can be determined by the identity 3 = ys, 1 €. by

Az) Az Ay Az)) = (zAy) Ay A{zAy).

In connection with this the following problem (posed 1n {23]) seems
to be interesting,.

PROBLEM 5 Prove or disprove that the variety Vy, of all n-commutative
BCK-algebras is determined by the identity z, = yn.

4. Subalgebras

A subset § of a BCK-algebra GG is a subalgebra if and only if it is
closed under BCK-operation. Of course, every subalgebra contains 0.
Moreover, as it 1s not difficult to see that every subset containing O
and one nonzero element is a subalgebra. On the other hand, J Hao
proved (cf. [14]) that every BCK-algebra of order n > 2 contams at
least one subalgebra of the order ¢ = 1,2,...,n — 1. In particular, a
BCK-algebra of order n > 2 contains at least one subalgebra of the
order n — 1. This means that every BCK-algebra of the order n > 2
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may be considered as one-element extension of a some BCK-algebra of
order n — 1.

Let N(¢) denotes the number of subalgebras of the order 7. Obvi-
ously 1 < N(¢} < C:;ll for every BCK-algebra of order » > 2, where
Cfl__ll denotes the number of ways for selecting ¢ — 1 elements from n—1
nonzero elements. Obviously, N(2) = n — 1 for every BCK-algebra of
the order n > 2. In general N(i) < C.7}, but there are BCK-algebras

in which N(i) = C%, for alli = 2,3,... , n. A simple example of such

BCK-algebra is the set G, = {0,1.... ,n — 1} with the operation *
defined by z * y = = for > y and z * y = 0 otherwise.

PROBLEM 6 Describe the structure of finite BCK-algebras in which
N(E)=Cr ) foralli=23,...,n.

PROBLEM 7 Describe the class of BCK-algebras in which every
subset containing U is a subalgebra (an ideal).

The partial answer to the Problem 6 gives

PROPOSITION 4 1 Let G be ¢ BCK-algebra of the order n > 3.
If N(i) = C%=4 for some fixzed 3 < i < n, then every subset of G
contawning 0 s a subalgebra.

Proor. Let M = {0,a;,a,...,4,1} be an arbitrary subset of a
BCK-algebra G, where i is as in the assumption.

Then &) = {0,a3,a3,...,a,31}, S2 = {0,a1,a3,...,a:+1} and Ss =
{0,a1,09,a4,...,a,+1} are subalgebras. Thus for all z,y € M = §; U
S5 U 83 we have zy € M, which proves that M is a subalgebra. Hence,
by induction, every subset containing 0 and j > i nonzero elements is
a subalgebra.

All subsets containing 0 and j < i nonzero elements are subalgebras
too. Indeed, if some §;, = {0,ay,...,a,} is not a subalgebra, then
there exist z,y € S; such that zy = 2 # ay for every ax € §,. Thus
M = 8;U{{a;+1,...,a,} \ {2}) containing 0 and i nonzero elements is
not a subalgebra, which is a contradiction.
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COROLLARY 4 2 In a BCK-algebra of order n > 3 all subsets con-
-1
tarning 0 are subalgebras if and only if N(3) = (n 5 )

COROLLARY 4.3 In a BCK-algebra of the order n > 3 for every
i =3,..,n— 1 we have esther N(i) = C:z—_ll or N(i) < C:w:-ll‘

Let G be a bounded BCK-algebra, i.e. a BCK-algebra in which there
exists an element 1 such that £ < 1 for all x € G. A subalgebra S of
such BCK-algebra is called eztremal if 1t contains 1. Such subalgebra
has at least two elements: 0 and 1.

PROPOSITION 4 4 Ifin a bounded BCK-algebra G all subsets of the
form {0,a,as,...,a,,1}, where i > 2 1s fized, are subalgebrus, then all
subsel of G contamming 0,1 and at least two elements are subalgebras.

ProoF A modification of the proof of Proposition 4.1.

Let N.(1) denotes the mumber of extremal subalgebras of the order
¢ > 2. Since every such subalgebra contains 0 and 1, then No(i) <

-2
(? B 2) for all bounded BCK-algebras of order n > 2.

COROLLARY 15 In a bounded BCK-algebra of order n > 3 for

every i = 3,...,n we have either Ne(1) = C 7% or No(i) < C1 5.

PROBLEM 8 Describe the class of bounded BCK-algebras in which
every subset containing 0 and 1 is a subalgebra

PrROBLEM 9 Describe the structure of finite BCK-algebras in which
N.(i) = C’__?z for every i = 3,4, ...,n.

n

Finally, we point out that these results are not true for finite BCI-
algebras (i.e for BCK-algebras in which (4) is not satisfied). A BCI-
algebra without subalgebras of order 3 is given in {14].

5. BCC-algebras

In conneetion with some problems on BCK-algebras (posed by K.
Iséki) Y. Komori introduced in [16] a notion of BCC-algebras and
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proved {(using some Gentzen-type system LC) that the smallest va-
riety containing the class of all BCC-algebras is finitely based, but the
class of all BCC-algebras is not a variety (cf. {17]).

Now in the literature BCC-algebras are defined as algebras § =
(G,,0) of type (2,0) satisfying

(15) (zy-2y)-zz2=0,

(3), (4) and (5).

This definition is a dual form of the ordinary definition given by
Y. Komori. In this convention any BCK-algebra is a BCC-algebra,
but there are BCC-algebras which are not BCK-algebras [7]. Such
BCC-algebras are called proper. The smallest proper BCC-algebra has
four elements. For every n > 4 there exists at least one proper BCC-
algebra with n elements. For n = 4 there is eight such non-isomorphic
BCC-algebras (cf. [7}), but for n = 5 such BCC-algebras is 346.

Obviously, any subalgebra containing at most 3 elements is a BCK-
algebra. Moreover, as was mentioned in [6], there are proper BCC-
algebras in which all subalgebras are BCK-algebras. Also there are
finite proper BCC-algebras in which all subsets containing 0 are sub-
algebras.

In connection with this the following two problems (posed in [6])
seems to be interesting.

PrROBLEM 10. Find a characterization of proper BCC-algebras in
which all subalgebras are BCK-algebras.

PrROBLEM 11 Find a characterization of BCC-algebras of finite
order n in which N(3) = C.Z} foralli = 1,2,... ,n.
The partial characterization is given by

PROPOSITION 5.1 A BCC-algebra in which any subset containing
0 is a subalgebra is a BCK-algebra.

PROOF. The proof is based (for details see [11]) on the simple fact
(proved in [7]) that a BCC-algebra is a BCK-algebra if and only if it
satisfies (2) or, equivalently, (8).

Note by the way, that any BCC-algebra satisfies (7) and (10), where
< is the natural order defined by (6). A commutative BCC-algebra is a



UNSOLVED PROBLEMS IN BCK-ALGEBRAS 127

BCK-algebra. But there are positive implicative BCC-algebras which
are not BCK-algebras. Similarly BCC-algebras with condition (J).
Moreover, in some BCC-algebras holds also (9). Such BCC-algebras
are called special (cf. {7]) and have many interesting properties.

PROBLEM 12 Describe the class of special BCC-algebras.

BCC-algebras are a generalization of BCK-algebras. So-called weak
BCC-algebras (described in [8)), are a common generalization of BCC-
and BCl-algebras. The class of all weak BCC-algebras is a quasivariety
defined by the independent axioms system: (5), (7) and (15). Any weak
BCC-algebra G satisfies also (3), but (2) or (8) are satisfied only in the
case when G is a BCl-algebra. A weak BCC-algebra satisfying (4)
is a BCC-algebra. A weak BCC-algebra which is not either a BCC-
algebra or a BCI-algebra is called proper. The smallest proper weak
BCC-algebra has four elements. There are two such non-isomorphic
algebras.

The general theory of weak BCC-algebras is similar to the theory of

BCl-algebras, but the problem of characterizations of congruences by
well-defined ideals is open.
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