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AN EQUIVALENT FORMULATION TO 
AN ERDOS5 PROBLEM ON A SET 
HAVING DISTINCT SUBSET SUMS

Jae gug Bae

Abstract We give an equivalent formulation to the Erdos7 conjec
ture on the lower bound of the greatest element in a set having distinct 
subset sums On this basis we suggest a possible approach towards 
Erdo요' conjecture Also we reproduce L. Moser's result by means of 
an analytic method

1. Introduction

A set having distinct subset sums is a set of numbers such that no 
two finite subsets have the same sum. To be precise, we give a formal 
definition.

Definition 1 1
(i) Let A be a set of real numbers. We say that A has the subset

sum-distinct property (briefly SSD-property) if for any two finite 
subsets XyY of &

〉［冬=y => X Y.
xex yeY
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Also, we say that A is SSD or A is an SSD-set if it has the SSD-property.
(ii) An increasing sequence of positive integers {an}^=i is called a 

subset-sum-distinct sequence (or briefly, an SSD-sequence) if it 
has the SSD-property.

One of the most interesting and natural SSD-sequences is 
t = {l,2,22,23,---}.
Now, for a given SSD-sequence how one can compare the

size of this sequence with t ? The following basic lemma will give some 
insight.

Lemma 1 2 Let {an}^=i be an SSD-sequence. Then

Ql + Q2 + , , , + an N 2W — 1

for every n > 1.

Proof Let

厶={<如任2,・• •，如} and J = b : 0 7^ B C A}.
beB

Note that all the elements of J are positive integers. Since A has the 
SSD-property,

B,Bf CA and B 产可 => Q + E矿

beB WeB1

Hence \ J\ = 2” — 1. Because H-------F is the greatest element
in J, we have

血 + % + …• + 2 2n — 1.

As {1,2,22,23, • ■ ■ } suggests, SSD-sequences are quite sparce. It 
seems very natural to ask how dense they can be. We will consider a 
question of this flavor in this paper.
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As a way of obtaining finite “dense” SSD-sets, one can use the 
Conway-Guy sequence (see [10], [11]). Here we explain the construc
tion of the Conway-Guy sequence. First, define an auxiliary sequence 
Un by

= 0, — 1 and 孔+고 = 2un — un_r, n > 1,

where r =<、『讯 >, the 효earest integer to V分云. Now, for a given 
positive integer n we define

Q% = — 안m—1 M § M 78.

The well-known Conway-Guy conjecture is that (at : 1 < i < n} was 
SSD for any positive integer n. This was resolved affirmatively in 1996 
by T. Bohman (see[2]).

2. An equivalent formulation and lower bounds

Let a = {QtJWi be an SSD-sequence. It is an old problem to find 
a lower bound for an (see [1, pp.47-48], [3], [5], [6, p.467], [7, pp.59- 
60], {1 이 and [l이). This problem can be stated inversely: Under the 
condition an < x, find an upper bound on n. N. Elkies mentioned the 
inter-relation between a lower bound on an and an upper bound on n 
in terms of x (see [4]). A lower bound of the form

(2.1) an > Cn"s2n(l + o(l)) 

(2-2)

corresponds to an upper bound of the form

71 < log2 Z + S log? log2 X 十 log2 丄十。⑴.

The famous conjecture of Erdos is that (3.1) and (3.2) hold with s = 0 
(see [9, p.64, problem C8]). In this context, we prove

THEOREM 2.1. Erdos7 conjecture is equivalent to

£冶 > c，£2(i)s= c，는歹 

z=l £=1
(2-3)

for all positive integers m, for all positive s, and for some positive 
constant C.
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Proof. It is clear that > C2m~l for all m implies (2.3). In 
the other direction, (2.3) implies mams > or am >

Since s can be as large as desired, we have am > 
C2m-1 for all m.

Lemma 1.2 shows that (2.3) is true for s = C = 1. Moreover, L. 
Moser proved (2.3) holded for s = 2)(7=1 (see 卩이). In his paper [4], 
Elkies also showed that

by an analytic method. But we point out that from L. Moser's result 
we can derive the better bound, an > -^n~^2n for n > 2, very easily:

n n [
五膏 > 丈2(1)2 = |(4n - 1)
右=丄 2=1

=» nan2 > — 4n => an > 2 2n.

In this way, it is very important to estimate an effective lower bound 
on £麗1遲 for large s. In Theorem 2.4 below we give a new proof 
of Moser's result (*) using an analytic method. Though Moser5s proof 
is simple enough, we give another because it might give some further 
insight.

First, we need the following two lemmas. The first one is quite sim
ple; the second is known as Laplace's method for estimating integrals.

Lemma 2.2 Let 0 < a <b be fixed. Then for any g > 0, we have

ya+y~a <yb + y~b.

Proof Note that

0 V g V 1 =》扩—矿 V 0 and yayb — 1 < 0,

y >1 => 扩一妒 2 0 and ya^ — 1 > 0.

Hence, for any ?/ > 0, (yb 一 ya)(yayb — 1) > 0. This implies that 
yay2b +ya > y2ayb + yb and the result follows upon dividing by ya+b.



GENERALIZED QUASIVARIATIONAL INCLUSIONS 97

Lemma 2.3. (Laplace fs method) Assume that two real valued func
tions 92(3;) and /(x), defined on (—cxd, oo), satisfy the following four 
conditions:

(i) (建))n is absolutely integrable on (—8,8)JV = 0丄 2,….
(ii) 了(w) > 0 for all x and /(») attains %ts maximum at x = 

Furthermore

sup{/(찌 : Z £ C} < /(C) 

for any closed subset C of (—8,。。) not containing &
(iii) f이(X、) exists and is continuous on (—00,00) and /"(£) < 0.
(iv) is continuous at x ~ and 9(f)丰 0. 

Then

/*OO
I 9(z)(/(z))N 血 ~ <pg)(・f(Q)N+*
J—8 

as N —‘ oo.

Proof See [12, Vol. I, Part II, Problem 201].

Theorem 2.4 
n 1

4=1 

Proof Let

2% 
心〃 G)

Clearly every element in A has the same parity and a E A implies 
~a E A. Since {%}異丄 is an SSD-sequence, we also have 0 £ 4. Note 
that no integers can be expressed in more than one way in. the form 
E7=1 g, where 勺=±L For

n
e'3aj = £招印,€； = ±1, e" = ±1

J=1 J=1
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is equivalent to

Hence \A\ = 2n . Now, by Lemma 2.2, we have

2“ ~~ I
£4 £ (舟一1十妒(2f)

aEA j=l

for all ?/ > 0. Let y = ex. Then

n
JJ (e% c 十 e-a3 H) = £： e"

j—1 aGA

了以 의整
J=1

Divide by 2n? take reciprocals, and raise both sides to the power 2m 
to obtain

/ „ \ 2m \ 2m(TT —1—) < 4-.血】些

'、弋* cosh (aj x)) \sinh (2n x))

Then integration from —8 to cq yields

z x f°° / A 1 \ 5「이 sinh 5； A J
(2.4) / I IT —-———? j dx < 4mn / I .\ 血•

J-oo '挡 cosh (dj x) J - J—8 \sinh (2n x)丿

To estimate the integral on the right side of (2.4), apply Lemina 2.3 
with N = 2m, f = 0,

/、 z 、 sinhx
用)=1 and N)=赢爾云矿
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Then, since /(0) = 2~n and (0) = |(2-n 一 2n),

f°° ( Sinhz〜/ 3 • 2穴
J-oo \ sinh (2n z)丿 V 2m (2n — 2-n) 

as m ——> oo. Thus
(") 户 匚(盒쁢詩)" 血 〜 2『 扁듀

as m —> oo. Now, in order to estimate the integral on the left side of 
(2.4), apply Lemma 2.3 with N = 2m搭=0,

贝)=1 and /(，)=旦 很项晶萄•

Note that here /(0) = 1 and 尸(0) — 一 £；=1.。广.Hence

(2.6) [ fJJ---- --------J dx 〜/ :二
J-8、盘 cosh (% X)J V m aj

as m ——> oo.
F¥om (2.4), (2.5) and (2.6) it follows that

n 1
- o(4” — 1)-

Finally, we sketch how this method might be used to obtain more 
detailed information on the lower bound of an. The (admittedly still 
rough) idea is first to obtain detailed information on all power sums

aj2fc. To do this, introduce the generating function
n

T I + . .. + 户：)

J = 1
where 处,3為• • •,妙冰 are all the 次-th roots of unity, and use the 
following generalized Laplace method'
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Theorem 2 5 (Generalized Laplace Method) Assume that a real 
valued function defined on (—00,00) satisfies the following:
(i) is integmble on (—00,00), AT = 0,1,2, ••-.
(ii) /(x) > 0 for all x and /(x) attains its maximum at x =

Furthermore
sup{/(c) : xeC} < /g)

for any closed subset C of (—00,00) not containing £.
(iii) emsts and is continuous on (—00,00).
(iv) 州(g) = 0 for I V 2m and /(2m)(^) < 0.
Then

l/(2m)
(2m)!匚 " 血 ~(英))m 哗쁴 5 w(&)

as N ——> oo.

Proof Imitate the proof of the Lemma 2.3 and use 나re fact (see 
[8, p.355, #3.326])

一 Xr广2腿=史冬

-oo m

Then take

y/ \ _ tt _____________ 2fc_____________
'') 11 + 秒。20产 + ….+ 砂"许)・

We have /(0) = 1, /")(()) = 0 for Z < 2fc and

严(0)= _$丄严.

Upon applying Theorem 2.5, it follows that
广/时血〜丄四㈣)(E时、广

J-8 k 5乙=i 印씨

as N ——> oo.
Of course, to make this approach successful, one needs to find an 

appropriate upper bound for the function /(x).
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