East Asian Math J 17(2001), No t, pp 57-70

A PERTURBED ALGORITHM OF
GENERALIZED QUASIVARIATIONAL
INCLUSIONS FOR FUZZY MAPPINGS

Jag UG JEONG

ABSTRACT In this paper, we mtroduce a class of generalized qua-
sivariational 1nclusions for fuzzy mappings and show its equivalence
with a class of fixed point problems Using this equivalence, we de-
velop the Mann and Ishikawa type perturbed iterative algorithms for
this class of generalized quasivariational inclusions Further, we prove
the existence of solutions for the class of generalized quasivariational

mclusions and discuss the convergence critena for the perturbed algo-
rithms

1. Introduction

In recent years, fuzzy set theory imntroduced by Zadeh[l5] in 1965
has emerged as an interesting and fascinating branch of pure and ap-
plied sciences. The applications of fuzzy set theory can be found in
many branches of regional, physical, mathematical and engineering,
management science, economics, transportation problems, and oper-
ations research, see (2,15,16] Motivated and inspired by the recent
research work gomg on in these two different fields, Chang and Zhuf2],
and Noor[8} introduced the concept of variational inequalities and com-
plementarity problems for fuzzy mappings. Noor{8] has shown that the
variational inequalities for fuzzy mappings are equivalent to fuzzy fixed
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point problems. This equivalence was used to suggest an iterative al-
gorithm for solving variational inequalities.

We remark that one of the most important and difficult problems in
variational inequality theory for fuzzy mappings is the development of
an efficient and implementable iterative algorithm for solving various
classes of variational inequalities for fuzzy mappings. The proximal
method {5] is one of the most efficient methods. We also remark that
the projection method and its various method can not be applied to
study the existence of a solution and to develop the iterative algorithm
for our comnsidered class of generalized quasivariational inclusions for
fuzzy mappings. Therefore, the aim of this paper is to study the ex-
istence theory and to develop the Mann and Ishikawa type perturbed
iterative algorithm for the class of generalized quasivariational inclu-
sions for fuzzy mappings. The convergence criteria for these algorithms
is also discussed.

2. Preliminaries

Let H be a real Hilbert space with norm || - | and inner product
<,>. A fuzzy set in H is a function with domain H and values in
[0,1]. If A is a fuzzy set in H and x € H, the function value A(x) is
called the grade of membership of # in A. We denote the collection
of all fuzzy sets on H by F(H). Let A € F(H) and o € (0,1]. The
a-level set of A, denoted (A),, is defined by (A), = {z : A(z) > a}.

A mapping T from H into F(H) is called a fuzzy mapping. If T :
H — F(H) is a fuzzy mapping, then T'(u), for v € H, is a fuzzy set
in F(H) and T'(u,v), for v € H, is the degree of membership of v in
T(u).

Now, let T' and M be two fuzzy mappings from H into F(H), and
g,m : H — H be two single valued mappings. Assume ¢ : H —
RU{+00} is a proper convex lower semi-continuous function and 8¢ is
the subdifferential of ¢. Then the generalized quasivariational inclusion
problem for fuzzy mappings (FGQVIP) is to find v € H, z € (T(u)),
y € (M(u)), (r € (0,1]) such that (g — m)(x) N domdé # ¢ and

(2.1) < z—y,v—(g—m)(u) >> d{(g—m)(u))—¢(v) forall »e€ H,
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where g — m is defined as (g — m)(u) = g(u) — m(u) for each v € H
and some r € {0, 1].

The problem (2.1) has many important and significant applications
in economics, transportation, control and optimization and network
problems. For the recent state of the art, see Giannessi and Maugeri[4].

If ¢ = dx, the indicator function of the nonempty closed convex
set K in H, then FGQVIP (2.1) is equivalent to finding v € H, z €
(T(u))r, y € (M(w)), (r € (0,1]) such that g{u) € K +m(u) such that

(2.2) <z—y,v—glu)>>0 foral ve K(u),

where the set K(u) is equal to K +m(u), which is called the completely
generalized strongly quasiwarational mequality problem for fuzzy map-
pings[10].

Particularly, if g is the identity mapping, the problem (2.2) is said
to be the generafived strongly guasivariational ineguality. problem for
fuzzy mappings (see [9]). We remark that FGQVIP (2.1) also includes
as special cases, the variational inequality problems for fuzzy mappings
considered by [8].

3. Mann and Ishikawa type perturbed iterative algorithms

DEFINITION 3 1 Let X be a Banach space with the dual space X~
and let ¢ : X — RU {+oo} be a proper functional. ¢ is said to be
subdifferential at a point z € X if there exists an f* € X* such that

¢ly) ~ ¢lz) 2< fry—2z >, Tye X,
where f* is called a subgradient of ¢ at x. The set of all subgradients

of ¢ at z is denoted by d¢(x). The mapping d¢ : X — 2% denoted
by

ap(x) ={f" € X" :¢(y) —px) 2 < [,y —z >, "yeX}
18 sald to be the subdifferential of ¢.

First of all, we prove that FGQVIP (2.1) is equivalent to a fixed
point problems.
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LEMMA 31 FGQVIP (2.1) has a solution if and only if for some
gwen 1 > 0, the mapping F : H — 29 defined by
(3.1)

F(u) = Uz, Uye (M), [u— (g —m) (1) + JZ((g—m) (u) —n(z— )],

where JP = (I +n0¢)~! 1s the so called proximal mapping, I stands
for the identity on H, has a fized point.

ProOOF Let (u*,z*,3*) be a solution of FGQVIP (2.1). Then we
have u* € H, z* € (T{(u*))s, ¥* € {M(u*)), such that (g — m)(u*) N
domd¢ # ¢ and
(32) <z’ —y',v—(g-m)(") >2 ¢((g—m)(w")) — d(v), "veH.
Using the definition of ¢, (3.2) can be written as

* * VR Y I AN
¥~ 5" € 8{(g—m)(u")),

and hence for any given 1 > 0,
(g-m)(W") —n(z” —y*) € (¢ — m)(u") +20¢((g ~ m)(v))
= (I +n0¢){{g — m)(u"))-

From the definition of J¢, we have

(g —m)(w*) = JZ((g - m)(w*) - n(z* —y")),
and hence
u=u — (g —m)() + JH({g — m)(u’) - niz” ~ y*))
€ U:::'E(T(u‘)),- Uy‘G(M(u‘))f- [u* - (g _ m)(u*)
+ I3 (g —m)(w') —nlz" —y*))] = F(u*),

lLe,u* € H is a fixed point of F.
Conversely, if ©v* € H is a fixed point of F, by definition of ¥, there
exist z* € (T'(v*)), and y* € (M(u*}), such that

u' = u = (g —m)(u") + I ((g - m){u") ~ n(z" - y"))-
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Hence, from the definition of J?, we have
(g~ m)(u") —n(z* —y") € (g — m)(u") + n0¢((g — m)(u")).
Note 73 > 0, and we have
y" —a" € 0p{(g — m)(u’)).
The definition of 8¢ yields
<z' -y, v—{(g—m)u*) >> ¢((g — m)(u")) - &(v), Vv e H,

and Im(g—m)Ndomdé¢ # ¢. Thus (u*,z*,y*) is a solution of FGQVIP
(2.1).

The transformation of FGQVIP (2.1) to the fixed point problem

{3.1) is very useful in the approximation analysis of FGQVIP (2.1).
One of the consequences of this transformation is that we can obtain
an approximate solution by an iterative algorithm.

DEFINITION 3 2 [8] A fuzzy mapping T : H — F(II) is said to be
(1) F-strongly monotone if for each z,y,u,v € H with T(x,u) >0
and T'(y,v) > 0, there exists a constant § € (0,1) such that

<u—wv,x—y>> bz -yl

(i) F-Lipschitz continuous if for each z,y, u,v € H with T{z,u) >
0 and T'(y,v) > 0, there exists a constant p € (0, 1) such that

flu = vff < pllx — .
DERINITION 3 3 An operator g : H — H is said to be
(i) a-strongly monotone if there exists a constant a > 0 such that
< g(z) — g(y),z —y >> allz — y||* forall x,y € H;

(ii) B-Lipschitz continuous if there exists a constant 3 > 0 such
that

lg{z) — gl < Bllxz —yl| forall z,y € H.
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Mann type perturbed iterative algorithm (MTPIA)

Let T,M : H =+ F(H) and g,m : H - H. Given yy € H, the
iterative sequences {u,}, {,}, and {y,} are defined by

Un41 = (1 "an)un+an[un_(g“‘m)(un)‘*"}:;bn ((g“m)(un)_n(mn_yﬂ))] +€n,

Tr € (T(tn))y, and y, € (M(un))r, n 20,

where {a, } is a real sequence satisfying ag =1, 0 < a,, < 1 for n > 0,
and 3 0° @, = 00; €, € H for all n is an error which is taken into
account for a possible inexact computation of the proximal point; {¢,}
is the sequence approximating ¢ and 5 > 0 is a constant.

Ishikawa type perturbed iterative algorithm (ITPIA)

Let T\M : H > F(H) and g,m : H — H. Given ug € H, the
iterative sequences {un}, {Zn}, and {y»} are defined by

Uny) = (1_an )un +an[’0n—(9—m)(vn)+J$" ((g_m) (Un)_ﬂ(i‘n —gn))]+en,

Un = (1=Bn)un+Ba[un—(g—m) (un)+JF" ((g—1) ()~ 1T ~n )| +BnYn,

for n > 0, where &, € (T(¥n))r, Tn € (M(V))r, Zn € (T(un))r,
Yn € (M(upn)),; e, and v, in H for all n > 0 are errors; {¢,} is the
sequence approximating ¢ ; {a, } and {3,} are real sequences satisfying
a0 =10<an,B, <lforn>0and Y .0, =00, and > 0is a
constant.

Next, we review some definitions and results which are needed in
the sequel.

LEMMA 3 2 [7] Let ¢ be a proper convex lower semicontinuous
function. Then J? = (I +nd¢)~! is nonezpansive, i.e.,

¢ (w) — Jg’('v)ﬂ < lw—w| forall u,ve H.
We remark that if ¢ = dg, the indicator function of a nonempty

closed convex K in H, then J?(u) = Pk (u) for each u € H and 7> 0
where Py is the projection mapping of H onto K.
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Several special cases of ITPIA are listed below.

(i) If 8, =0 for all n > 0, ITPIA reduces to MTPIA.

(ii) If ¢, = 8k for all n > 0, the indicator function of a nonempty
closed convex set K in H, e, =r, =0foralln>0, 3, =0
for all n > 0, ¢ = I, the identity mapping, and m is a zero

mapping, then ITPIA reduces to the Algorithm in Theorem
3.4 of Park and Jeong [9].

(i) I ¢, = 0k for all n > 0, g = I, the identity mapping, e, =
rn, =0 foralln > 0 and 3, = 0 for all n > 0, then ITPIA
reduces to the Algorithm in Theorem 3.5 of Park and Jeong

[91.
4. Existence and convergence result

In this section, we prove the existence of a solution of FGQVIP (2.1)
and discuss the convergence criteria of ITPIA.

THEOREM 4.1 LetT . H — F(H) be F-Lipschilz continuous and
F-strongly monotone, M . H — F(H) be F-Lipschitz continuous, (g —
m): H — H be a-strongly monotone, and g,m : H — H be B-Lapschitz
continuous and §-Lipschatz continuous, respectively. Assume that

(41) <mv)—mu),gw) —g®) > < Aju-vlf?, “wveH
for some comstant X such that A\g < \ < B€, where
Ao = Inf{A :< m(v) — m(u), g(u) — g(v) > < Afu—v|?, “u,v € H}.

If there exists a constant n > 0 such that pn <1 —k,

1 1
(4.2) 5{1 ~[L—(k+n)* +n*p*} < 26 < ot p’n,

and k = 24/1 — 2a + €2 + 32 + 2X < 1, then (u*,z*,y*) is a solution
of FGQVIP (2.1). Moreover, 1f

Jim {3 (0) ~ J2(0)| = 0, v e H,
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and {un}, {ZTn}, and {g.} are defined by ITPIA with conditions
(i) limnooo lienll = 0 = limp oo [|7all,
(i) 2o IT)—is1(Q ~ @, (1 — ¢)) converges, 0 < ¢ < 1, then {un},

{Z,}, and {gn} strongly converge to u*, z*, and y*, respec-
tively.

Proor First we prove that the FGQVIP (2.1) has a solution (v*,z*,y")
By Lemma 3.1, it is enough to show that the mapping F : H — 2%
defined by (3.1) has a fixed point w*. For any w,v € H, p € F(u), and
g € F(v), there exist z, € (T(w)),, 23 € (T(¥))r, 11 € (M(u)),, and
ys € (M(v)), such that

p=u~—(g—m)u)+ JP{(g — m)(u) — n{z1 ~u1))

and
q=v—(g—m)(v)+J7((g — m)(v) — n(z2 — 12)).

By Lemma 3.2, we have

lp—qll < flu—v—((g — m)(u) - (g— m){(v))l
+ (g — m)(w) ~ (g — m)(v) — n{z1 — z2) + (Y1 — )|l
< 2fu—v = ((g —m)(w) — (g —m)(v))
(4.3) +llu — v —n(z1 — z2)|| + npllu — v

By using the Lipschitz continuity of g and m, the strong monotonicity
of (g — m), and (4.1), we obtain

e —v — ((g = m}(u) = (g — m)(o))}?
= |lu—|* -2 <u—v,(g - m)(x) - (g — m)(v) >
+ (g = m)(w) - (g — m)(v)}?
=flu—v|*-2<u—v,(g—m)u) - (g — m)(v) >
+ [m(u) — m@)|* + lg(u) — g(v)||®
+ 2 < m(v) — m{u), g(u) — g(v) >
(4.4) <(1~-20+ €+ 3%+ 2)0)|lu —v|)%.
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By using F-Lipschitz continuity and F-strong monotonicity of T, we
have

e~ v —n(z1 ~ z2)|?
= v~ vl|* - 29 <u—v,z; — 22 > +0?llz — 29|
< Jlu = vl? — 2ndlju — v}f* + 9o |lu — ||?
(4.5) = (1 — 216 +n*p*)|lu — o).

Therefore, it follows that

D(F(u), F(v)) < {2¢/1 — 20+ £2 4+ 32 + 2X
+ /1 =28 +72p? + np}lu ~
= {k +t(n) + no}{lu - v}

(4(3\, — “Hu——-~°*”

UII’

where k = 2¢/1 — 22+ €2 + 82+ 2, t(n) = /1 — 296 + np?, and
8 = k+t(n) +np. By condition (4.2), we see that 0 < 8 < 1. It follows
from (4.6) and Theorem 3.1 of Siddiqi and Ansari [13] that F has a
fixed point »* € H. Hence by Lemma 3.1, there exist z* € (I'(u*)),
and y* € (M(u*)), such that {u*,z*,%*) is a solution of FGQVIP (2.1).
Next we prove that the iterative sequences {u,}, {Z.}, and {#n}
defined by ITPIA strongly converge to «*, x*, and y*, respectively.

Since FGQVIP (2.1) has a solution {u*,z*,y*) then, by Lemma 3.1,
we have

= ut - (g - m)(u') + JF((g - m)(u") - (="~ y")).

By making use of the same arguments used for obtaining (4.4) and
(4.5), we get

lun—u*—((g—m)(ua)—(g—m) (@)l € V1 - 20 + & + B + 2X e —2” |

ln =" = n(@n —27)|| < V1= 208 + 7262 |[un — ™),

Joa=u’~((g—m)(va)~(g-m)())I < Vi~ 20 +& + B+ 2|un—u'l,
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and
on — u* ~ n(@n — )| < V1 - 298 + 0282 ||v, — u'}).
By setting
h(u®) = (g - m)(u") —n(z” — y)
and '
h(vn) = (g — m){(vn) — 9(Zn — Un)
we have

fent1 —w'{f < {1 — an)ijun —u'|]
+anllvn — u* = ((g — m)(vn) — (g — m)(w")
(4.7) + |l I3 (h(va)) — IR (R(u )] + llenll-
Now, since Jg’" is nonexpansive, we have
157 (h(wn)) ~ T3 {h(w" )]
< [Ia(va) = R(u") [ + I3 (h(u*)) — S ()]
< lon =" = ((g — m)(va) — (g — m)(u"))]
+ vn — u* — (@, —z7)||
+0llgn — 3"l + 15~ (R (")) = TR (R(w))]
< V1 =20+ + 52 + 2o, — o7
+ V1 - 208 + 9262 |ju, — 'l + npllv. — 7|
(4.8) + g (R(w?)) — TR DI

On combining {4.7) and (4.8) and using the F-Lipschitz continuity of
M, we get

”un+1 —u' H
< (1= ap)||lttn — u*|| + @nl2y/1 — 20 + £2 + B2 + 2X
+ /1= 296 + 1262 + npljlvn — v}
+ ap || g (h(u*)) ~ JE(h(w" )| + llea]l
= (1 - an)llun — u’| + anbjvn — u*||
(4.9} + pen + llenl],
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where § = 2,/1 — 20+ €2 + 32 + 22 + /1 — 2na + 9232 + yp and
en = I3 (R(u*)) ~ JZ(R(u* ).

Next

lon — 2"} < (1 = Bn)ljun — u™||

(4.10)

+ Bnliun — u* = (g~ m)(un) — (g — m){u"))

+ Bl (h(ua)) — JE (LD + Bnlirall-

By making use of the same arguments used for obtaming (4.8), we get

157 (R(un)) — I3 (R(w"))]]

(4.11)

< [1R(un) = ()| + |57 (h(u™)) — S (R(u®))
< flun —u" = ((9— m)(un) — (g = m) ("))

N, _a* il At
T ]é"""? £ 'I\"""n CdE g

+llyn ~ gl + 1 (A(™)) — I3 (h(u*))]

<[V1 =20+ + 32 42X+ /1 — 214 + 5262

+ 0ol — U*" +é€n-

On combining (4.10) and (4.11), we get

(4.12)

since {1 — B,(1 — #)) < 1. On combining (4.9) and (4.12), we get

lon ~ ) < (U~ Ba)lfn = | + Bublfun — u]

+ ﬁnan + }gn"rnu

= (1 = Ba{1 = O)un — ™} + B (en + [I7al])

<y — w|f + Brlen + Iral)
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”uﬂ+1 - u*” < (1 - an(l - 9))"“11 - u' [l + Qpén
+ 80 Bn(en + [I7al) + llenl]

< 1‘[(1 — (1 — 0))[|luo — u|

+ iaj H (1 —o,(1—8)k;

=0 =j+l

+03 a8 [ (1—ault —0))ej + lIms 1)

7=0 =341

(4.13) +3° ] (- (1 —0)ie,ll,

F=02=3+1

where [[;_,, (1~ a,(1-6))=1when j=n.

Now, let B denote the lower triangular matrix with entries b,; =
@, [[ic;+1(1 — @.(1 = 8)). Then B is multiplicative, see Rhoades [L1],
so that

lim Y a, ] (1—ea.(1-8)), =0,
i=0 =3+1

n n

1=0 i=3-+1
since liMy, 400 ||| = 0 and limy, 00 £ = 0.
Let D be the lower triangular matrix with entries d,; = [[/_ 5 (1=
a,(1 — 8)). Condition (ii) implies that D is multiplicative, and hence

im Y [T - el - 0)esll =0,

00
1=01=3+1

since lim,, ;o |len|| = 0. Also,
lim H(l —a(1—8)) =0,

n—oo 4
=0
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since 3. a; = oo. Hence, it follows from inequality(4.13) that
HMpoeo|Untt — w*| = 0, i.e., the sequence {u,} strongly converges
to ¢* in H. The inequality (4.12) implies that the sequence {v,} also
converges to u*. Since z,, € T'(v,), * € T(u"), and T is F-Lipschitz
continuous, we have

|2, — 2} < pllvn, —u*|| >0 as n — oo,

i.e., {Z,} strongly converges to z*. Similarly, we can prove that {g,}
strongly converges to y*.

We remark that if 3, = 0 for all n > 0, Theorem 4.1 gives the
conditions under which the sequences {u,}, {z,}, and {y,} defined by
MTPIA strongly converge to u*, z*, and y*, respectively.
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