East Asian Math J. 17(2001), No 1, pp 47-56

ON SOME PROPERTIES OF PRETOPOLOGICAL CONVERGENCE STRUCTURES

SANG-HO PARK AND MYEONG-JO KANG

ABSTRACT In this paper we introduce generalized q-interior operator and n-th pretopological modification of q Furthermore we establish a characterization of $\pi_n(q) = \lambda(q)$

1. Introduction

A convergence structure q defined by Kent ([4]) is a correspondence between the filters on a given set X and the subsets of X which specifies that filters converge to points of X. For given convergence structure qon a set X, Kent introduced convergence structures with q, which are called the pretopological modification and the topological modification. They are denoted by $\pi(q)$ and $\lambda(q)$, respectively.

A q-interior operator I_q introduced by Choquet ([3]) is a set function which has all of the properties of topological interior operator except idempotency. In this paper, we introduce generalized q-interior operator and n-th pretopological modification of q. They are denoted by I_q^n and $\pi_n(q)$, respectively. Also, we study some properties of them and obtain a characterization of $\pi_n(q) = \lambda(q)$.

2. Preliminaries

Received September 19, 2000. Revised April 17, 2001

²⁰⁰⁰ Mathematics Subject Classification 54A20.

Key words and phrases convergence structure (space), pretopological convergence structure (space), q-interior operator

Let X be a set. A nonempty collection Φ of nonempty subsets of X is said to be a *filter* on X if it satisfies the following conditions:

- (1) $A \in \Phi$ and $B \in \Phi$ implies $A \cap B \in \Phi$,
- (2) $A \in \Phi$ and $A \subset B$ implies $B \in \Phi$.

For a nonempty set X, F(X) denotes the set of all filters on X and P(X) the set of all subsets of X.

A convergence structure q on a set X is defined to be a function from F(X) into P(X) satisfying the following conditions: For each Φ and Ψ in F(X),

- (1) $x \in q(\dot{x})$ for each $x \in X$,
- (2) if $\Phi \subset \Psi$, then $q(\Phi) \subset q(\Psi)$,
- (3) if $x \in q(\Phi)$, then $x \in q(\Phi \cap \dot{x})$,

where \dot{x} denotes the ultrafilter containing $\{x\}$. In this case the pair (X,q) is said to be a convergence space. If $x \in q(\Phi)$, we say that Φ q-converges to x. The filter $V_q(x)$ obtained by intersecting all filters which q-converge to x is said to be a q-neighborhood filter at x. If $V_q(x)$ q-converges to x for each $x \in X$, then q is said to be a pretopological convergence structure on X, and (X,q) a pretopological convergence space. The pretopological convergence structure if for each $x \in X$, the filter $V_q(x)$ has a filter base $B_q(x)$ with the following property:

$$y \in G \in B_q(x)$$
 implies $G \in B_q(y)$.

Let C(X) be the set of all convergence structures on X, partially ordered as follows:

$$q_1 \leq q_2 ext{ iff } q_2(\Phi) \subset q_1(\Phi) ext{ for all } \Phi \in F(X).$$

If $q_1 \leq q_2$, then we say that q_1 is coarser than q_2 and q_2 is finer than q_1 .

For any $q \in C(X)$, we define the following related convergence structures $\pi(q)$ and $\lambda(q)$:

(1) $x \in \pi(q)(\Phi)$ iff $V_q(x) \subset \Phi$, (2) $x \in \lambda(q)(\Phi)$ iff $U_q(x) \subset \Phi$, where $U_q(x)$ is the filter generated by the sets $U \in V_q(x)$ which have the property: $y \in U$ implies $U \in V_{q}(y)$.

In this case $\pi(q)$ and $\lambda(q)$ are called the the pretopological modificatron and the topological modification of q. Also, the pairs $(X, \pi(q))$ and $(X,\lambda(q))$ are called the pretopological modification and the topological modification of (X, q), respectively.

PROPOSITION 1([4]). Let (X, q) be a convergence space. If $(X, \pi(q))$ and $(X,\lambda(q))$ are the pretopological modification and the topological modification of (X,q), respectively. Then the following statements hold:

- (1) $\pi(q)$ is the finest pretopological convergence structure coarser than q,
- (2) $\lambda(q)$ is the finest topological convergence structure coarser than q,

(3)
$$\lambda(q) \leq \pi(q) \leq q$$
.

Let f be a map from a convergence space (X,q) to a convergence space (Y, p). Then f is said to be *continuous* at a point $x \in X$, if the filter $f(\Phi)$ on Y p-converges to f(x) for every filter Φ on X qconverging to x. If f is continuous at every point $x \in X$, then f is said to be continuous.

We define a set function $I_q^n: P(X) \to P(X)$ for each $n \in N \cup \{\infty\} \cup$ $\{0\}$, where N is the set of all positive integers, as follows:

(1)
$$I_{q}^{0}(A) = A$$
,

- (2) $I_q^1(A) = I_q(A) = \{x \in X \mid A \in V_q(x)\},\$
- (3) $I_q^{n+1}(A) = I_q(I_q^n(A)), \text{ if } n \in \mathbb{N},$ (4) $I_q^{\infty}(A) = \cap \{I_q^n(A) \mid n \in \mathbb{N}\}.$

PROPOSITION 2 ([5]). For each $n \in N \cup \{\infty\} \cup \{0\}$, I_q^n has the following properties:

- (1) $I_q^n(\emptyset) = \emptyset, I_q^n(A) \subset A,$
- (2) $I_{o}^{in}(X) = X$,
- $\begin{array}{l} (3) \quad I_q^n(A \cap B) = I_q^n(A) \cap I_q^n(B), \\ (4) \quad A \subset B \quad implies \quad I_q^n(A) \subset I_q^n(B) \end{array}$

for each $A, B \subset X$.

But, in general $I_a^n(I_a^n(A)) \neq I_a^n(A)$ for all $A \subset X$.

Define $V_q^n(x) = \{A \subset X \mid x \in I_q^n(A)\}$. Then $V_q^n(x)$ is a filter on X for each $n \in N \cup \{\infty\}$.

Also, we know that for each $n \in N \cup \{\infty\}$

$$I_q^n(A) \supset I_q^{n+1}(A) \supset I_q^{\infty}(A)$$
 for each $A \subset X$

and

$$V_q^n(x) \supset V_q^{n+1}(x) \supset V_q^\infty(x)$$
 for each $x \in X$.

Define a structure $\pi_n(q)$ for each $n \in N \cup \{\infty\}$ as follows:

$$x\in \pi_n(q)(\Phi)$$
 iff $V_q^n(x)\subset \Phi$

for each $\Phi \in F(X)$

While, since $V_q^n(x) \subset \dot{x}$, $x \in \pi_n(q)(\dot{x})$ for each $x \in X$. Also, $\Phi \subset \Psi \in F(X)$ implies $\pi_n(q)(\Phi) \subset \pi_n(q)(\Psi)$.

Let $x \in \pi_n(q)(\Phi)$. Then $V_q^n(x) \subset \Phi$. Since $V_q^n(x) \subset \dot{x}$, we obtain $V_q^n(x) \subset \Phi \cap \dot{x}$ and so $x \in \pi_n(q)(\Phi \cap \dot{x})$. Also, $x \in \pi_n(q)(V_q^n(x)) = \pi_n(q)(V_{\pi_n(q)}(x))$ for each $x \in X$. Thus $\pi_n(q)$ is a pretopological convergence structure on X.

In this case $\pi_n(q)$ is called the *n*-th pretopological modification of qAlso, $(X, \pi_n(q))$ is called the *n*-th pretopological modification of (X, q).

It is not difficult to show that for each $n \in N \cup \{\infty\}$, the following statements hold:

(1) $V_{\pi_n(q)}(x) = V_q^n(x)$ for all $x \in X$.

- (2) $I_{\pi_n(q)}(A) = I_q^n(A)$ for all $A \subset X$.
- (3) For each $n \in N$, $q \ge \pi_n(q) \ge \pi_{n+1}(q) \ge \pi_{\infty}(q)$.

3. Main Results

By Proposition 1 and the definition of $\pi_n(q)$, we know that

$$q \ge \pi(q) \ge \pi_2(q) \ge \cdots \ge \pi_n(q) \ge \pi_{n+1}(q) \ge \cdots \ge \pi_\infty(q) \ge \lambda(q).$$

THEOREM 3. Let (X, q) be a pretopological convergence space. Then the following are equivalent:

- (1) q is a topological convergence structure.
- (2) I_q is idempotent

PROOF (1) \Rightarrow (2): It is clear that $I_q(I_q(A)) \subset I_q(A)$ for all $A \subset X$. We will show that $I_q(A) \subset I_q(I_q(A))$. Let $x \in I_q(A)$. Then $A \in V_q(x)$. Since q is a topological convergence structure, there exists $G \in B_q(x)$ such that $G \subset A$, where $B_q(x)$ is a filter base of $V_q(x)$ which has the following property:

$$y \in H \in B_q(x)$$
 implies $H \in B_q(y)$.

Since $y \in G \Rightarrow G \in B_q(y) \subset V_q(y)$, we obtain $y \in I_q(G)$. Thus $I_q(G) = G$. Since $G = I_q(G) \subset I_q(A)$ and $V_q(x)$ is a filter, $I_q(A) \in V_q(x)$. Thus $x \in I_q(I_q(A))$ and so $I_q(A) = I_q(I_q(A))$. That is I_q is idempotent.

 $(2) \Rightarrow (1)$: Take $B_q(x) = \{B \in V_q(x) \mid I_q(B) = B\}$ for each $x \in X$. Since $I_q(X) = X$, we obtain $B_q(x)$ is not a empty collection. Since $\emptyset \notin V_q(x)$, we obtain $\emptyset \notin B_q(x)$. Let $G_i \in B_q(x)$ for $i \in \{1,2\}$ Then $G_i \in V_q(x)$ and $I_q(G_i) = G_i$ for $i \in \{1,2\}$. Since $G_1 \cap G_2 = I_q(G_1) \cap I_q(G_2) = I_q(G_1 \cap G_2)$ and $V_q(x)$ is a filter, we obtain $G_1 \cap G_2 \in B_q(x)$. Also, let $A \in V_q(x)$. Since I_q is idempotent, $I_q(A) = I_q(I_q(A))$ and $I_q(A) \in V_q(x)$. Thus $I_q(A) \in B_q(x)$. Since $I_q(A) \subset A$, $B_q(x)$ is a filter base of $V_q(x)$. Let $y \in H \in B_q(x)$ Since $H = I_q(H)$, we obtain $y \in I_q(H)$. Thus $H \in B_q(y)$. Therefore q is a topological convergence structure.

PROPOSITION 4 Let (X,q) be a convergence space. Then $\phi(q) = \lambda(q)$ iff I_q is idempotent

PROOF. Assume that $\pi(q) = \lambda(q)$. Since $\pi(q)$ is a pretopological convergence structure and $\pi(q) = \lambda(q)$, $\pi(q)$ is a topological convergence structure. By Theorem 3, $I_{\pi(q)}$ is idempotent Since $I_{\pi(q)}(A) = I_q(A)$ for all $A \subset X$, I_q is idempotent. Conversely, let I_q be idempotent. By Theorem 3, q is a topological convergence structure. It is clear that $\lambda(q) = q$ iff q is a topological convergence structure. We know that $q \geq \pi(q) \geq \lambda(q)$. Thus $q = \pi(q) = \lambda(q)$.

THEOREM 5 Let (X,q) be a convergence space. Then for each $n \in N \cup \{\infty\}$, the following statements are equivalent:

- (1) $\pi_n(q) = \lambda(q).$
- (2) I_a^n is idempotent.

PROOF. (1) \Rightarrow (2): Assume that $\pi_n(q) = \lambda(q)$. We will show that I_q^n is idempotent. Let $A \subset X$ and $x \in I_q^n(A)$. Then $A \in V_q^n(x)$. Since $\pi_n(q)$ is a topological convergence structure, there exists $G \in B_q^n(x)$ such that $G \subset A$, where $B_q^n(x)$ is a filter base of $V_q^n(x)$ which has the following property:

$$y \in H \in B^n_o(x)$$
 implies $H \in B^n_a(y)$.

Thus $I_q^n(G) = G$. Since $G = I_q^n(G) \subset I_q^n(A)$ and $V_q^n(x)$ is a filter, we obtain $I_q^n(A) \in V_q^n(x)$. Thus $x \in I_q^n(I_q^n(A))$ and so $I_q^n(A) = I_q^n(I_q^n(A))$. That is I_q^n is idempotent.

(2) \Rightarrow (1): Assume that I_q^n is idempotent. Let $B_q^n(x) = \{G \in V_q^n(x) \mid I_q^n(G) = G\}$ for each $x \in X$. Since $I_q^n(X) = X$, we obtain $X \in B_q^n(x)$. Since $\emptyset \notin V_q^n(x)$, we obtain $\emptyset \notin B_q^n(x)$. Let $G_i \in B_q^n(x)$ for $i \in \{1, 2\}$. Since $G_1 \cap G_2 = I_q^n(G_1) \cap I_q^n(G_2) = I_q^n(G_1 \cap G_2)$ and $V_q^n(x)$ is a filter, we obtain $G_1 \cap G_2 \in B_q^n(x)$. Also, let $A \in V_q^n(x)$. Since I_q^n is idempotent, $I_q^n(A) = I_q^n(I_q^n(A))$ and $I_q^n(A) \in V_q^n(x)$. Thus $I_q^n(A) \in B_q^n(x)$. Since $I_q^n(A) \subset A$, $B_q^n(x)$ is a filter base of $V_q^n(x)$. Let $y \in G \in B_q^n(x)$. Since $H = I_q^n(H)$, we obtain $y \in I_q^n(H)$. Thus $G \in B_q^n(y)$. Therefore $\pi_n(q)$ is a topological convergence structure. Since $\lambda(q)$ is the finest topological convergence structure coarser than q. That is $\pi_n(q) = \lambda(q)$.

In that case $n = \infty$, the proof is similar to in the case $n \in N$.

DEFINITION 6. Let (X, q) be a convergence space. The *length* of q is defined by the smallest positive integer n satisfying $I_q^{n+1}(A) = I_q^n(A)$ for each $A \subset X$. We denote l(q) = n.

If $l(q) \neq n$ for all $n \in N$ and $I_q(I_q^{\infty}(A)) = I_q^{\infty}(A)$ for all $A \subset X$,

then we denote $l(q) = \infty$.

THEOREM 7. Let (X,q) be a convergence space and $n \in N \cup \{\infty\}$. Then the following statements are equivalent:

(1) I_q^n is idempotent and I_q^m is not idempotent for m < n. (2) l(q) = n. **PROOF**. At first we will prove in the case $n \in N$.

 $(1) \Rightarrow (2)$: Assume that for each $A \subset X$, $I_q^n(I_q^n(A)) = I_q^n(A)$ and $I_q^m(I_q^m(B)) \neq I_q^m(B)$ for some $B \subset X$ if m < n. By the definition of $T_q^m(B)$

$$I_q(A) \supset I_q^2(A) \supset \dots \supset I_q^n(A) \supset I_q^{n+1}(A) \supset \dots \supset I_q^n(I_q^n(A))$$

$$\supset \dots \supset I_q^{\infty}(A) \supset I_q(I_q^{\infty}(A)) \supset \dots \supset I_q^{\infty}(I_q^{\infty}(A)) \supset \dots$$

Since $I_q^n(I_q^n(A)) = I_q^n(A)$, we obtain $I_q^{n+1}(A) = I_q^n(A)$. Suppose that $I_q^{m+1}(A) = I_q^m(A)$ for m < n. Then $I_q^m(I_q^m(A)) = I_q^m(A)$ and so I_q^m is idempotent. This is a contradiction. Thus l(q) = n

(2) \Rightarrow (1) : Assume that l(q) = n. Then $I_q^n(A) = I_q^{n+1}(A) =$ $I_q(I_q^n(A)) = I_q^2(I_q^n(A)) = \cdots = I_q^n(I_q^n(A))$. Thus I_q^n is idempotent. Also, by the definition of l(q) = n, I_q^m is not idempotent for m < n. In that case $n = \infty$. By the definition of $l(q) = \infty$, it is clear that $(1) \Leftrightarrow (2).$

COROLLARY 8 Let (X,q) be a convergence space and $n \in N \cup \{\infty\}$. Then $\pi_n(q) = \lambda(q)$ and $\pi_m(q) \neq \lambda(q)$ for m < n iff l(q) = n.

PROOF By Theorem 5 and Theorem 7.

PROPOSITION 9 Let (X,q) and (Y,p) be convergence spaces and $f: (X,q) \rightarrow (Y,p)$ be a map. Then for each $n \in N \cup \{\infty\}$, the following statements are equivalent:

(1) $f(V_q^n(x)) = V_p^n(f(x))$ for all $x \in X$. (2) $I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B))$ for each $B \subset Y$.

PROOF (1) \Rightarrow (2) · Assume that $f(V_q^n(x)) = V_p^n(f(x))$ for all $x \in$ X. Let $x \in I_q^n(f^{-1}(B))$. Then $f^{-1}(B) \in V_q^n(x)$ and so $B \in f(V_q^n(x))$. Since $f(V_q^n(x)) = V_p^n(f(x)), B \in V_p^n(f(x))$. Thus $f(x) \in I_p^n(B)$ and so $x \in f^{-1}(f(x)) \in f^{-1}(I_p^n(B))$. Therefore $I_q^n(f^{-1}(B)) \subset f^{-1}(I_p^n(B))$. The reverse inequality is proved by the counter-order.

 $(2) \Rightarrow (1)$: Assume that $I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B))$ for each $B \subset Y$. Let $B \in V_p^n(f(x))$ Then $f(x) \in I_p^n(B)$ and so $x \in f^{-1}(I_p^n(B))$. Since $I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B)), x \in I_q^n(f^{-1}(B)).$ Thus $f^{-1}(B) \in V_q^n(x)$ and so $B \in f(V_q^n(x))$ Therefore $V_p^n(f(x)) \subset f(V_q^n(x))$. The reverse inequality is proved by the counter-order.

PROPOSITION 10. Let (X,q) and (Y,p) be convergence spaces. Let $f: (X,q) \rightarrow (Y,p)$ be a map. Then the following statements are equivalent:

(1)
$$V_p(f(x)) = f(V_q(x)).$$

(2) $V_p^n(f(x)) = f(V_q^n(x))$ for each $n \in N \cup \{\infty\}$

PROOF. (2) \Rightarrow (1): It is clear.

(1) \Rightarrow (2): We will use the mathematical induction to prove above Proposition. Assume that $V_p^k(f(x)) = f(V_q^k(x))$ and let $B \in V_p^{k+1}(f(x))$. Then $f(x) \in I_p^{k+1}(B) = I_p(I_p^k(B))$ and so $I_p^k(B) \in V_p(f(x)) = f(V_q(x))$. By assumption and Proposition 9, $f^{-1}(I_p^k(B)) = I_q^k(f^{-1}(B)) \in V_q(x)$. Thus $x \in I_q(I_q^k(f^{-1}(B)) = I_q^{k+1}(f^{-1}(B))$ and so $f^{-1}(B) \in V_q^{k+1}(x)$. Finally, $B \in f(V_q^{k+1}(x))$. This means $V_p^{k+1}(f(x)) \subset f(V_q^{k+1}(x))$. The reverse inequality is proved by the counter-order. In that case $n = \infty$, let $B \in V_p^{\infty}(f(x))$. Then $f(x) \in I_p^{\infty}(B)$ and so $f(x) \in I_p^n(B)$ for each $n \in N$. Thus $B \in V_p^n(f(x)) = f(V_q^n(x))$ for each $n \in N$. $B \in \cap\{f(V_q^n(x)) \mid n \in N\} = f(\cap\{V_q^n(x) \mid n \in N\}) =$

f($V_q^{\infty}(x)$). Finally, $V_p^{\infty}(f(x)) \subset f(V_q^{\infty}(x))$. The reverse inequality is proved by the counter-order.

DEFINITION 11 ([6]). Let (X,q) and (Y,p) be convergence spaces. An onto map $f : (X,q) \to (Y,p)$ is said to be *open* if satisfies the following condition: whenever an ultrafilter Ψ on Y p-converges to y, then for each x in $f^{-1}(y)$ there is a filter Φ which maps on Ψ and q-converges to x.

PROPOSITION 12 Let (X,q) and (Y,p) be convergence spaces. If a map $f: (X,q) \to (Y,p)$ is onto, continuous and open, then $V_p(f(x)) = f(V_q(x))$ for each $x \in X$.

PROOF. Since f is continuous, $f(\Phi)$ *p*-converges to f(x) whenever Φ *q*-converges to x. Thus $f(V_q(x)) = f(\cap\{\Phi \mid x \in q(\Phi)\}) = \cap\{f(\Phi) \mid x \in q(\Phi)\}) \supset \cap\{f(\Phi) \mid f(x) \in p(f(\Phi))\} \supset V_p(f(x))$. Also, we will claim that $f(V_q(x)) \subset V_p(f(x))$. Let $B \in f(V_q(x))$. Then B = f(A)for some $A \in V_q(x)$. Let Ψ be an ultrafilter which *p*-converges to f(x). Since f is open, there is a filter Φ such that Φ *q*-converges to x and $f(\Phi) = \Psi$. Since $A \in \Phi$, we obtain $B = f(A) \in f(\Phi) = \Psi$. Thus B is in each ultrafilter which p-converges to f(x) and so $B \in V_p(f(x))$. Therefore $f(V_q(x)) \subset V_p(f(x))$.

THEOREM 13 Let (X,q) and (Y,p) be convergence spaces. Let a map $f: (X,q) \to (Y,p)$ be onto, continuous and open. If I_q^n is idempotent, then I_p^n is idempotent.

PROOF Let $B \subset Y$. Then $f^{-1}(B) \subset X$. Since I_q^n is idempotent, $I_q^n(I_q^n(f^{-1}(B))) = I_q^n(f^{-1}(B))$. By Proposition 9 and Proposition 12, $I_q^n(I_q^n(f^{-1}(B))) = I_q^n(f^{-1}(I_p^n(B))) = f^{-1}(I_p^n(I_p^n(B)))$ and $I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B))$. Thus $f^{-1}(I_p^n(B)) = f^{-1}(I_p^n(B))$ and so $I_p^n(I_p^n(B)) = I_p^n(B)$. Therefore I_p^n is idempotent.

COROLLARY 14 Let (X,q) and (Y,p) be convergence spaces. Let a map $f : (X,q) \to (Y,p)$ be onto, continuous and open. Then f preserves the length of convergence structure

PROOF By Corollary 8 and Theorem 13.

References

- [1] N. Bourbaki, General topology. Addison-Wesley Pub Co. (1966).
- [2] A M Carstens and D C Kent, A note on product of convergence spaces, Math Ann 182 (1969), 40 - 44
- [3] G Choquet, Convergence, Ann Univ Grenoble Sect Sci Math Phys. 23 (1948), 57 - 112
- [4] D C Kent, Convergence functions and their related topologies, Fund Math 54 (1964), 125 - 133
- [5] D.C. Kent, Convergence quotient maps, Fund Math. 65 (1969), 197 205
- [6] D.C. Kent and G.D. Richardson, Open and proper maps between convergence spaces, Czechoslovak Mathematical Journal **98** (1973), 15 23.
- [7] B Y Lee, On Initial Convergence Structures, Ph.D Thesis Gyeongsang National Univ (1990).

Sang-ho Park Department of Mathematics Gyeongsang National University

SANG-HO PARK AND MYEONG-JO KANG

Chinju 660-701, Korea *E-mail*: sanghop@nongae.gsnu.ac.kr

Myeong-Jo Kang Department of Mathematics Gyeongsang National University Chinju 660-701, Korea *E-mail*: S-kmjo@gshp.gsnu.ac.kr

56