COMMON FIXED POINT THEOREMS FOR MANN TYPE ITERATIONS

SUSHIL SHARMA AND BHAVANA DESHPANDE

ABSTRACT In this paper, we give some common fixed point theorems for five and six mappings satisfying the Mann-type iteration in Banach spaces. We improve some results of Gornicki and Rhoades, Khan and Imdad, Cho, Fisher and Kang, Cirick and many others.

Introduction and Preliminaries

Let $(X, \|\cdot\|)$ be a Banach space and F be a mapping from a nonempty closed convex subset C of X into itself. Let I denote the identity mapping. If F is nonexpansive, i.e.

$$||Fx - Fy|| \le ||x - y||$$

for all $x, y \in C$, then Krasnoselskii [21] proved that, for some $x_0 \in C$, the sequence $\{F^n x_0\}$ does not converge necessarily to a fixed point of F, whereas the sequence $\{F_{\lambda}^n x_0\}$, where

(*)
$$F_{\lambda} = (1 - \lambda)I + \lambda F, \quad 0 < \lambda \le 1,$$

may converge to a fixed point of F as shown by Krasnoselskii [21] which assumed that $\lambda = \frac{1}{2}$, X is uniformly convex and C is compact subset of X. Schaefer [32], extended this result for a general number λ .

Received September 6, 2000 Revised April 6, 2001 2000 Mathematics Subject Classification 54H25, 47H10

Key words and phrases Mann-type iteration, compatible mapping, common fixed point.

The scheme (*) has been extended by the so called "Mann iterative process" [22] associated with F, which is described in the following way:

$$(**) x_{n+1} = (1 - c_n)x_n + c_n F x_n$$

for $n = 0, 1, 2, \ldots$, where $\{c_n\}$ is a sequence of real numbers such that

$$0 < c_n \le 1$$
 and $\sum_{n=0}^{\infty} c_n = \pm \infty$.

The scheme (**) has been studied by many authors [1],[2],[5]-[8],[11], [14],[15],[17],[23]-[25] and [27]-[31].

In this paper, we show that a sequence in C defined by the Manntype iterations converges to a unique common fixed point of five and six mappings on C, satisfying some conditions. Our results extend and improve some results of Gornicki and Rhoades [10], Iseki [12],[13], Khan and Imdad [18]-[20], Rehman and Ahmad [26], Rhoades [29]-[31], Cho, Fisher and Kang [3]

In [16], Jungck defined the concept of compatibility of two mappings which inculdes weakly commuting mappings as a proper subclass.

DEFINITION. Let A and S be two mappings from a normed linear space $(X, \|\cdot\|)$ into itself. The mappings A and S are said to be compatible if

$$\lim_{n\to\infty} \|ASx_n - SAx_n\| = 0$$

where $\{x_n\}$ is a sequence in X such that

$$\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z$$

for some $z \in X$.

LEMMA 1 [16] Let A and S be compatible mappings of a normed linear space $(X, \|\cdot\|)$ into itself. If Az = Sz for some $z \in X$, then

$$ASz = S^2z = SAz = A^2z.$$

Main Results

THEORM 1. Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and A, B, S, T and P be mappings from C into itself satisfying the following conditions:

(1.1) there exist constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$\begin{split} \|Px - Py\| &\leq \alpha \|ABx - STy\| + \beta \|ABx - Px\| \\ &+ \gamma max\{\|STy - Py\|, \|ABx - Py\|\} \\ &+ \delta \|STy - Px\| \end{split}$$

for all $x, y \in C$, where $0 \le \alpha + \gamma + \delta < 1$ and $0 \le \gamma < 1$, (1.2) for some $x_0 \in C$, there exists a constant $k \in [0,1)$ such that

$$||x_{n+2} - x_{n+1}|| \le k||x_{n+1} - x_n||$$

for n = 0, 1, 2, ... where $\{x_n\}$ is a sequence in C defined by

- $(1.3) ABx_{2n+1} = \frac{1}{2}Px_{2n} + \frac{1}{2}ABx_{2n}, STx_{2n+2} = \frac{1}{2}Px_{2n+1} + \frac{1}{2}STx_{2n+1},$
- (1.4) the pairs $\{P, AB\}$ and $\{P, ST\}$ are compatible,
- (15) PB = BP, PT = TP, AB = BA, ST = TS,
- (1.6) A, B, S and T are continuous at $z \in C$.

Then the sequence $\{x_n\}$ defined by (1.3) converges to $z \in C$ and Pz is a unique common fixed point of A, B, S, T and P.

PROOF. From (1.2), it follows that

$$||x_{n+2} - x_{n+1}|| \le k^{n+1} ||x_1 - x_0||,$$

for n = 0, 1, 2, ... and so $\{x_n\}$ is a Cauchy sequence in C. Since C is closed subspace of a complete space X, it is also complete and hence the sequence $\{x_n\}$ converges to a point $z \in C$.

We will prove that Pz is a unique common fixed point of A, B, S, T and P.

From (1.3), it follows that

$$\frac{1}{2}Px_{2n} = ABx_{2n+1} - \frac{1}{2}ABx_{2n}$$

and since A and B are continuous at z, we have

$$\lim_{n\to\infty} ABx_n = \lim_{n\to\infty} Px_{2n} = ABz.$$

Similarly, we also have

$$\lim_{n\to\infty} STx_n = \lim_{n\to\infty} Px_{2n+1} = STz.$$

By (1.1), we have

$$\begin{aligned} \|Px_{2n} - Px_{2n+1}\| &\leq \alpha \|ABx_{2n} - STx_{2n+1}\| + \beta \|ABx_{2n} - Px_{2n}\| \\ &+ \gamma max \{ \|STx_{2n+1} - Px_{2n+1}\|, \|ABx_{2n} - Px_{2n+1}\| \} \\ &+ \delta \|STx_{2n+1} - Px_{2n}\|. \end{aligned}$$

This implies that, as $n \to \infty$

$$\begin{aligned} \|ABz - STz\| &\leq \alpha \|ABz - STz\| + \beta \|ABz - ABz\| \\ &+ \gamma max \{ \|STz - STz\|, \|ABz - STz\| \} \\ &+ \delta \|STz - ABz\| \\ &= (\alpha + \gamma + \delta) \|ABz - STz\|, \end{aligned}$$

which implies that ABz = STz since $0 \le \alpha + \gamma + \delta < 1$. By (1.1), we have

$$||Px_{2n} - Pz|| \le \alpha ||ABx_{2n} - STz|| + \beta ||ABx_{2n} - P_x 2n|| + \gamma \max\{||STz - Pz||, ||ABx_{2n} - Pz||\} + \delta ||STz - Px_{2n}||.$$

This implies that, as $n \to \infty$

$$\|ABz - Pz\| \le \alpha \|ABz - STz\| + \beta \|ABz - ABz\|$$

 $+ \gamma \max\{\|STz - Pz\|, \|ABz - Pz\|\} + \delta \|STz - ABz\|$
 $= \gamma \|ABz - Pz\|,$

which implies that ABz = Pz since $0 \le \gamma < 1$. Combining the above results, we have

$$(1.7) ABz = STz = Pz.$$

Since the pair $\{P,AB\}$ is compatible and ABz = Pz for some $z \in X$, then by Lemma 1, we obtain

$$(1.8) \qquad (AB)Pz = P^2z.$$

From (1.1), (1.7) and (1.8), it follows that

$$\begin{split} \|P^{2}z - Pz\| &\leq \alpha \|AB(Pz) - STz\| + \beta \|AB(Pz) - P^{2}z\| \\ &+ \gamma \max\{ \|STz - Pz\|, \|AB(Pz) - Pz\| \} \\ &+ \delta \|STz - P^{2}z\| \\ &= (\alpha + \gamma + \delta) \|P^{2}z - Pz\|, \end{split}$$

which implies that $P^2z = Pz$ since $0 \le \alpha + \gamma + \delta < 1$.

On the other hand, from (1.1), (1.5) and (1.7) it follows that

$$\|PBz - Pz\| \le \alpha \|AB(Bz) - STz\| + \beta \|AB(Bz) - PBz\|$$

 $+ \gamma \max\{ \|STz - Pz\|, \|AB(Bz) - Pz\| \}$
 $+ \delta \|STz - PBz\|$
 $\le (\alpha + \gamma + \delta) \|BPz - PZ\|,$

which implies that BPz = Pz since $0 \le \alpha + \gamma + \delta < 1$.

By (1.8), we have $AB(Pz) = P^2z$. Therefore, APz = Pz.

Since the pair $\{P, ST\}$ is compatible and Pz = STz for some $z \in X$, then again by Lemma 1, we obtain

$$(1.9) ST(Pz) = P^2z.$$

From (1.1), (1.5) and (1.7), it follows that

$$||Pz - PTz|| \le \alpha ||ABz - ST(Tz)|| + \beta ||ABz - Pz||$$

 $+ \gamma max\{||ST(Tz) - PTz||, ||ABz - PTz||\}$
 $+ \delta ||ST(Tz) - Pz||$
 $\le (\alpha + \gamma + \delta) ||TPz - Pz||,$

which implies that TPz = Pz since $0 \le \alpha + \gamma + \delta < 1$.

By (19), we have $ST(Pz) = P^2z$. Therefore, SPz = Pz. Combining the above results we obtain

$$APz = BPz = SPz = TPz = P^2z = Pz.$$

Therefore, Pz is a common fixed point of A, B, S, T and P.

The uniqueness of the common fixed point Pz follows easily from (1.1). This completes the proof.

If we put B = T = I (the identity mapping on C) in Theorem 1, we obtain the following:

COROLLARY 1. Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and A, S and P be mappings from C into itself satisfying the following conditions:

(i) there exist constants $\alpha, \beta, \gamma, \delta \leq 0$, such that

$$\begin{split} \|Px - Py\| & \leq \alpha \|Az - Sy\| + \beta \|Ax - Px\| \\ & + \gamma max\{\|Sy - Py\|, \|Ax - Py\|\} + \delta \|Sy - Px\| \end{split}$$

for all $x, y \in C$, where $0 \le \alpha + \gamma + \delta < 1$,

(ii) for some $x_0 \in C$, there exists a constant $k \in [0,1)$ such that $||x_{n+2} - x_{n+1}|| \le k||x_{n+1} - x_n||$

for all n = 1, 2, 3, ..., where $\{x_n\}$ is a sequence in C defined by

- (iii) $Ax_{2n+1} = \frac{1}{2}Px_{2n} + \frac{1}{2}Ax_{2n}, Sx_{2n+2} = \frac{1}{2}Px_{2n+1} + \frac{1}{2}Sx_{2n+1},$
- (iv) the pair $\{P,A\}$ and $\{P,S\}$ are compatible,
- (v) A and S are continuous at $z \in C$.

Then the sequence $\{x_n\}$ defined by (iii) converges to $z \in C$ and Pz is a unique common fixed point of A, S and P.

If we put B = T = A = S = I in Theorem 1, we have the following result due to Gornicki and Rhoades [10].

COROLLARY 2. Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and P be a mapping from C into itself satisfying the following conditions.

(vi) there exist constants
$$\alpha, \beta, \gamma, \delta \ge 0$$
, $0 \le \gamma < 1$ such that $\|Px - Py\| \le \alpha \|x - y\| + \beta \|x - Px\| + \gamma \max\{\|y - Py\|, \|x - Px\|\} + \delta \|y - Px\|$

for all $x, y \in C$.

(vii) for some $x_0 \in C$, there exists a constant $k \in [0,1)$ such that

$$||x_{n+2}-x_{n+1}|| \le k||x_{n+1}-x_n||$$

for n=0,1,2,..., where $\{x_n\}$ is a sequence in C defined by (viii) $x_{n+1}=\frac{1}{2}Px_n+\frac{1}{2}x_n$.

Then the sequence $\{x_n\}$ defined by (viii) converges to a point $z \in C$ and z is a unique fixed point of P.

From Corollary 2, we have the following result due to Ciric [4].

COROLLARY 3 Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and P be a mapping from C into itself satisfying the following condition:

there exists a constant $k \in [0,1)$ such that

$$\|Px - Py\| \leq k \max\{\|x - y\|, \frac{1}{2}\|x - Py\|, \frac{1}{2}\|y - Py\|, \frac{1}{2}\|x - Px\|, \frac{1}{2}\|y - Px\|\}$$

for all $x, y \in C$ and

$$\left(\frac{k}{2}\right)^{\alpha}\|x-y\|\leq k\|P^2x-y\|\leq \left(\frac{k}{2}\right)^{\beta}\|x-y\|$$

for all $x \in C$ and $y \in \{Fx, Px, PFx\}$ where $Fx = \frac{1}{2}(x+Px)$ and $0 \le \beta \le \alpha < 1$. Then P has a unique fixed point in C.

REMARK 1 Theorem 1 contains some results as special cases, i.e. Corollary 3 contains Theorem 1 of Goebel and Zlotkiwicz [19] theorems of lseki [12], [13]. Theorem 2.1 of Khan and Imdad [19].

If we replace the condition (1.4) in Theorem 1. by the following condition:

(1.10)
$$AB = P = I$$
 and $ST = P = I$,

we obtain the following.

COROLLARY 4 Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and A, B, S, T and P be mappings from C into itself satisfying the conditions (1.1), (1.2), (1.3), (1.5), (1.6) and (1.10). Then the sequence $\{x_n\}$ defined by (1.3) converges to a point $z \in C$ and z is a unique common fixed point of A, B, S, T and P.

REMARK 2. Corollary 4, improves results of Gornicki and Rhoades [10], Khan and Imdad [19], Rehman and Ahmad [26].

REMARK 3 In Theorem 1, if we replace conditions (1.4) and (1.6) by the following conditions.

- $(1.11) ||x ABx|| \ge ||x STx||, ext{ for all } x \in X$
- (1.12) A and B are continuous,
- (1.13) the pair $\{P, AB\}$ is compatible.

Then Theorem 1, is still true.

By using the Theorem 1, we have the following:

THEOREM 2 Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and A, B, S, T and $\{P_i\}_{i\in\Lambda}$ be mappings from C into itself satisfying conditions (1.2) and (1.6) of Theorem 1 and the following conditions.

(2.1) there exist constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$||P_{i}x - P_{i}y|| \le \alpha ||ABx - STy|| + \beta ||ABx - P_{i}x|| + \gamma \max\{||STy - P_{i}y||, ||ABx - P_{i}y||\} + \delta ||STy - P_{i}x||$$

for all $x, y \in C$, for all $i \in \Lambda$ where Λ is an index set, $0 \le \alpha + \gamma + \delta < 1$ and $0 \le \gamma < 1$, a sequence $\{x_n\}$ in C is defined by

(2.2)
$$ABx_{2n+1} = \frac{1}{2}P_{i}x_{2n} + \frac{1}{2}ABx_{2n},$$

 $STx_{2n+2} = \frac{1}{2}P_{i}x_{2n+1} + \frac{1}{2}STx_{2n+1}$

for all $i \in \Lambda$,

- (2.3) for all $i \in \Lambda$, the pairs $\{P_i, AB\}$ and $\{P_i, ST\}$ are compatible,
- (2.4) for all $i \in \Lambda$, $P_{i}B = BP_{i}$, $P_{i}T = TP_{i}$, AB = BA, ST = TS.

Then the sequence $\{x_n\}$ defined by (2.2) converges to $z \in C$ and $P_i z$ for all $i \in \Lambda$ is a unique common fixed point of A, B, S, T and $\{P_i\}_{i \in \Lambda}$.

PROOF. The proof of Theorem 2 is similar to that of Theorem 1.

Now, we extend Theorem 1, for six mappings. We prove the following:

THEOREM 3. Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and A, B, S, T, P and Q be mappings from C into itself satisfying conditions (1.2), (1.6) of Theorem 1 and the following conditions:

(3.1) there exist constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$||Px - Qy|| \le \alpha ||ABx - STy|| + \beta ||ABx - Px|| + \gamma \max ||STy - Qy||, ||ABx - Qy|| + \delta ||STy - Px||$$

for all $x,y \in C$, where $0 \le \max\{\alpha + \gamma + \delta, \beta + \delta\} < 1$ and $0 \le \gamma < 1$, a sequence $\{x_n\}$ in C is defined by

(3.2)
$$ABx_{2n+1} = \frac{1}{2}Px_{2n} + \frac{1}{2}ABx_{2n},$$

 $STx_{2n+2} = \frac{1}{2}Qx_{2n+1} + \frac{1}{2}STx_{2n+1},$

- (3.3) the pairs $\{P,AB\}$ and $\{Q,ST\}$ are compatible.
- (3.4) PB = BP, AB = BA, ST = TS, TQ = QT.

Then the sequence $\{x_n\}$ defined by (3.2) converges to a point $z \in C$ and Qz is a unique common fixed point of A, B, S, T, P and Q

PROOF. From (1.2) it is clear that $\{x_n\}$ is a Cauchy sequence in C. Since C is closed subspace of a complete space X, it is also complete and hence the sequence $\{x_n\}$ converges to a point $z \in C$. We will prove that Qz is a unique common fixed point of A, B, S, T, P and Q. From (3.2) it follows that

$$\frac{1}{2}Px_{2n} = ABx_{2n+1} - \frac{1}{2}ABx_{2n}$$

and since A and B are continuous at z, we have

$$\lim_{n \to \infty} ABx_n = \lim_{n \to \infty} Px_{2n} = ABz.$$

Similary, we also have

$$\lim_{n\to\infty} STx_n = \lim_{n\to\infty} Qx_{2n+1} = STz.$$

By (3.1), we have

$$||Px_{2n} - Qx_{2n+1}|| \le \alpha ||ABx_{2n} - STx_{2n+1}|| + \beta ||ABx_{2n} - Px_{2n}|| + \gamma \max\{||STx_{2n+1} - Qx_{2n+1}||, ||ABx_{2n} - Qx_{2n+1}||\} + \delta ||STx_{2n+1} - Px_{2n}||.$$

This implies that, as $n \to \infty$

$$||ABz - STz|| \le (\alpha + \gamma + \delta)||ABz - STz||,$$

which implies that ABz = STz since $0 \le \alpha + \gamma + \delta < 1$. By (3.1), we have

$$||Px_{2n} - Qz|| \le \alpha ||ABx_{2n} - STz|| + \beta ||ABx_{2n} - Px_{2n}|| + \gamma \max\{||STz - Qz||, ||ABx_{2n} - Qz||\} + \delta ||STz - Px_{2n}||.$$

This implies that, as $n \to \infty$

$$||ABz - Qz|| \le \gamma ||ABz - Qz||,$$

which implies that ABz = Qz since $0 \le \gamma < 1$. Again by (3.1), we have

$$\begin{split} \|Pz - Qx_{2n+1}\| &\leq \alpha \|ABz - STx_{2n+1}\| + \beta \|ABz - Pz\| \\ &+ \gamma \max\{\|STx_{2n+1} - Qx_{2n+1}\|, \|ABz - Qx_{2n+1}\|\} \\ &+ \delta \|STx_{2n+1} - Pz\|. \end{split}$$

This implies that, as $n \to \infty$

$$||Pz - Qz|| \le (\beta + \delta)||Pz - Qz||,$$

which implies that Pz = Qz since $0 \le \beta + \delta < 1$. Combining the results we have

$$(3.5) \quad ABz = STz = Pz = Qz.$$

Since $\{P, AB\}$ is compatible and ABz = Pz for some $z \in X$, then by Lemma 1, we obtain

$$(3.6) \quad (AB)Pz = P^2z.$$

Similarly,

$$(3.7) \quad (ST)Qz = Q^2z.$$

From (3.1), (3.5) and (3.6), it follows that

$$||P^2z - Qz|| \le (\alpha + \gamma + \delta)||P^2z - Qz||,$$

which implies that $P^2z = PQz = Qz$, since $0 \le \alpha + \beta + \gamma < 1$. By (3.1), (3.4) and (3.5), we have

$$||PBz - Qz|| \le (\alpha + \gamma + \delta)||PBz - Qz||.$$

Since $0 \le \alpha + \gamma + \delta < 1$, therefore, we have BPz = BQz = Qz. By (3.6), we have $(AB)Pz = P^2z$. Therefore, AQz = Qz. From (3.1), (3.5), (3.7), we have

$$\|Pz-Q^2z\|\leq (\alpha+\gamma+\delta)\|Pz-Q^2z\|.$$

Since $0 \le \alpha + \gamma + \delta < 1$, therefore, we have $Q^2z = Pz = Qz$. Finally from (3.1), (3.4) and (3.5), it follows that

$$||Pz - QTz|| \le (\alpha + \gamma + \delta)||TQz - Pz||,$$

which implies that TQz = Pz = Qz, since $0 \le \alpha + \gamma + \delta < 1$. By (3.7), we have $(ST)Qz = Q^2z$. Therefore, we have SQz = Qz. Combining the above results we obtain

$$AQz = BQz = SQz = TQz = PQz = Q^2z = Qz.$$

Therefore, Qz is a common fixed point of A, B, S, T, P and Q. The uniqueness of the common fixed point Qz follows easily from (3.1). This completes the proof.

In Theorem 3, if we put B = T = I (the identity map on C) we obtain the following result due to Cho, Fisher and Kang [3].

COROLLARY 5 Let C be a nonempty closed convex subset of a Banach space $(X, \|\cdot\|)$ and A, S, P and Q be the mappings from C into itself satisfying the following conditions:

(1) there exists constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$||Px - Qy|| \le \alpha ||Ax - Sy|| + \beta ||Ax - Px|| + \gamma max\{||Sy - Qy||, ||Ax - Qy||\} + \delta ||Sy - Px||.$$

for all $x, y \in C$, where $0 \le \max\{\alpha + \gamma + \delta, \beta + \delta\} < 1, 0 \le \gamma < 1$,

(2) for some $x_0 \in C$, there exists a constant $k \in [0,1)$ such that

$$||x_{n+2} - x_{n+1}|| \le k||x_{n+1} - x_n||$$

for n = 0, 1, 2, ..., where $\{x_n\}$ is a sequence in C defined by

- (3) $Ax_{2n+1} = \frac{1}{2}Px_{2n} + \frac{1}{2}Ax_{2n}, Sx_{2n+2} = \frac{1}{2}Qx_{2n+1} + \frac{1}{2}Sx_{2n+1},$
- (4) the pairs $\{P,A\}$ and $\{Q,S\}$ are compatible,
- (5) A and S are continuous at the point $z \in C$.

Then the sequence $\{x_n\}$ defined by (3) converges to a point $z \in C$ and Qz is a unique common fixed point of A, S, P and Q.

Remark 3. If we put P = Q in Theorem 3, it reduces to Theorem 1.

REFERENCES

- [1] S Abbaoui, Deux th or mes du point fixe, Bull Soc.Math.Belg.Series B 43 (1991), 117 121
- [2] R.K. Bose, and R.N. Mukherjee, Approximating fixed points of some mappings, Proc.Amer Math Soc 82 (1981), 603 606
- [3] Y.J Cho, B. Fisher, and S M Kang, Common fixed point theorems for Mann type iterations, Math Japonica 48 3 (1998), 385, 390.
- [4] L. Ciric, A generalization of Banach's contraction principle, Proc.Amer.Math Soc. 45 (1974), 267 273
- [5] K.M. Das, S.P. Singh and B Watson, A note on Mann iteration for quasinonexpansive mappings, Nonlinear Analysis 6 (1981), 675 - 676
- [6] W.G. Doston and H.F. Senter, Approximating fixed points of nonexpansive mappings, Proc.Amer.math Soc. 44 (1974), 375 - 379
- [7] G Emmanuele, Convergence of the Mann-Ishikawa iterative process for non-expansive mappings, Nonlinear analysis 6 (1982), 1135 1141.

- [8] G Emmanuele, A remark on my paper: "Convergence of the Mann-Ishikawa iterative process for nonexpansive mapping", Nonlinear Analysis 7 (1983), 473
 474.
- [9] K Goebel and E. Zlotkiewicz, Collog Math 23 (1971), 103 106
- [10] J. Gornicki and B.E. Rohades, A general fixed point theorem for involutions, to appear in India J. Pure Appl.Math
- [11] M D Guay and K L Singh, Convergence of sequences of iterations for a pair of mappings, J. Math Phy Sci 18 (1984), 461 - 472
- [12] K. Iseki, Fixed Point Theorems in Banach Spaces, Math. Siminar Notes. Kobe. Univ. 2 (1974), 11 - 13.
- [13] K. Iseki, Math Balkanica 5 (1975), 143 144
- [14] S. Ishikawa, Fixed points by a new iteration method, Proc Amer Math Soc 44 (1974), 147 - 150
- [15] S. Ishikawa, Fixed points and iterations of a nonexpansive mapping in a Banach space, Proc Amer Math Soc. 59 (1976), 65 - 71
- [16] G Jungck, compatible mapping and common fixed points, Internat. J Math and Math Sci 9 (1986), 771 - 779
- [17] L.A. Khan. Fixed points by Ishikama iterates in metric linear spaces, Math Rep Toyama Univ 12 (1989), 57 - 63
- [18] M.S. Khan, Fixed points and their approximation in Banach spaces for certain commuting mappings, Glasgow Math. J. 23 (1982), 1 - 6.
- [19] M.S. Khan, M. Imdad, J. Austral. Math. Soc. 37 (1984), 169 177
- [20] M.S. Khan, M. Imdad and S. Sessa, A coincidence theorem in normed linear spaces, Libertas Math. 6 (1986), 83 - 94
- [21] M A Krasnoselskii, Two remarks about the method of successive approximation, Uspehi Mat. Nauk 63 (1955), 123 - 127
- [22] W R Mann, Mean value methods in iteration, Proc. Amer Math Soc 4 (1953), 506 - 510
- [23] S. Massa, Fixed point approximation for quasi-nonexpansive mappings, Le Mathematiche 37 (1982), 3 7
- [24] S V R Naidu and J R. Prasad, Ishikawa iterates for a pair of maps, Indian J pure Appl Math 17 (1986), 193 - 200
- [25] S A Naimapally and K. L Singh, Extensions of some fixed point theorems of Rhodes, J Math Anal appl 96 (1983), 437 - 446
- [26] F U. Rehman and B Ahmad, J Nat Sci. and Math. 30 (1990), 45 50.
- [27] B E Rhoades, Extensions of some fixed point theorems of 'Ciric', Maiti and Pal, Math Seminar Notes, Kobe Univ 6 (1978), 41 46
- [28] B E. Rhoades, Some fixed point iteration procedures, Internat J Math. and Math. Sci. 14 (1991), 1-16
- [29] B E Rhoades, A general principle for Mann iteration, to appear in Indian J Pure Appl Math
- [30] B E. Rhoades, A general principle for Ishikawa iteration, preprint

- [31] B.E. Rhoades, A fixed point theorem for a Mann-type iteration involving two compatible involuions, preprint
- [32] H. Schaefer, *Uber die Methode sukzessive.*, Approximationen, Iber Deutch.Math. Verein **59** (1957), 131 140
- [33] S Sessa, On a weak commutativity condition in fixed point considerations, Publ.Inst Math 46(32) (1982), 149 - 153

Sushil Sharma Department of Mathematics Madhav Science College Ujjain(M.P.), India

Bhavana Deshpande
Department of Mathematics
Govt.Arts and Science College
Ratlam(M.P.), India
E-mail: makdag@bim.cumhuriyet.edu.tr