COMMON FIXED POINT THEOREMS FOR MANN TYPE ITERATIONS

Sushil Sharma and Bhavana Deshpande

Abstract

In this paper, we give some common fixed point theorems for five and six mappings satisfying the Mann-type teration in Banach spaces We improve some results of Gornickı and Rhoades, Khan and Imdad, Cho, Fisher and Kang, Cirick and many others

Introduction and Preliminaries

Let $(X,\|\cdot\|)$ be a Banach space and F be a mapping from a nonempty closed convex subset C of X into itself Let I denote the identity mapping. If F is nonexpansive, i.e.

$$
\|F x-F y\| \leq\|x-y\|
$$

for all $x, y \in C$, then Krasnoselskii [21] proved that, for some $x_{0} \in C$, the sequence $\left\{F^{n} x_{0}\right\}$ does not converge necessarily to a fixed point of F, whereas the sequence $\left\{F_{\lambda}^{n} x_{0}\right\}$, where

$$
\begin{equation*}
F_{\lambda}=(1-\lambda) I+\lambda F, \quad 0<\lambda \leq 1, \tag{*}
\end{equation*}
$$

may converge to a fixed point of F as shown by Krasnoselskii [21] which assumed that $\lambda=\frac{1}{2}, X$ is uniformly convex and C is compact subset of X. Schaefer [32], extended this result for a general number λ.

Received September 6, 2000 Revised April 6, 2001
2000 Mathernatics Subject Classfication $54 \mathrm{H} 25,47 \mathrm{H} 10$
Key words and phrases Mann-type iteration, compatible mapping, common fixed point.

The scheme (*) has been extended by the so called "Mann iterative process"[22] associated with F, which is described in the following way :

$$
\begin{equation*}
x_{n+1}=\left(1-c_{n}\right) x_{n}+c_{n} F x_{n} \tag{**}
\end{equation*}
$$

for $n=0,1,2, \ldots$, where $\left\{c_{n}\right\}$ is a sequence of real numbers such that

$$
0<c_{n} \leq 1 \quad \text { and } \quad \sum_{n=0}^{\infty} c_{n}= \pm \infty
$$

The scheme $(* *)$ has been studied by many authors $[1],[2],[5]-[8],[11]$, [14], [15], [17], [23]-[25] and [27]-[31].

In this paper, we show that a sequence in C defined by the Manntype iterations converges to a unique common fixed point of five and six mappings on C, satisfying some conditions. Our results extend and improve some results of Gornicki and Rhoades [10], Iseki [12], [13], Khan and Imdad [18]-[20], Rehman and Ahmad [26], Rhoades [29]-[31], Cho, Fisher and Kang [3]

In [16], Jungck defined the concept of compatibility of two mappings which inculdes weakly commuting mappings as a proper subclass.

Definition. Let A and S be two mappings from a normed linear space $(X,\|\cdot\|)$ into itself. The mappings A snd S are said to be compatzble if

$$
\lim _{n \rightarrow \infty}\left\|A S x_{n}-S A x_{n}\right\|=0
$$

where $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z
$$

for some $z \in X$.
Lemma 1 [16] Let A and S be compatzble mappings of a normed linear space $(X,\|\cdot\|)$ into atself. If $A z=S z$ for some $z \in X$, then

$$
A S z=S^{2} z=S A z=A^{2} z
$$

Main Results

Theorm 1. Let C be a nonempty closed convex subset of a Banach space $(X,\|\cdot\|)$ and A, B, S, T and P be mappings from C anto atself satzsfying the following conditions:
(1.1) there extst constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$
\begin{aligned}
\|P x-P y\| & \leq \alpha\|A B x-S T y\|+\beta\|A B x-P x\| \\
& +\gamma \max \{\|S T y-P y\|,\|A B x-P y\|\} \\
& +\delta\|S T y-P x\|
\end{aligned}
$$

for all $x, y \in C$, where $0 \leq a+\gamma+\delta<1$ and $0 \leq \gamma<1$,
(1.2) for some $x_{0} \in C$, there exnsts a constant $k \in[0,1)$ such that

$$
\left\|x_{n+2}-x_{n+1}\right\| \leq k\left\|x_{n+1}-x_{n}\right\|
$$

for $n=0,1,2, \ldots$ where $\left\{x_{n}\right\}$ is a sequence in C defined by
(1.3) $A B x_{2 n+1}=\frac{1}{2} P x_{2 n}+\frac{1}{2} A B x_{2 n}$, ST $x_{2 n+2}=\frac{1}{2} P x_{2 n+1}+\frac{1}{2} S T x_{2 n+1}$,
(1.4) the parrs $\{P, A B\}$ and $\{P, S T\}$ are compatible,
(15) $P B=B P, P T=T P, A B=B A, S^{\prime} T=T S$,
(1.6) A, B, S and T are continuous at $z \in C$.

Then the sequence $\left\{x_{n}\right\}$ defined by (1.3) converges to $z \in C$ and $P z$ is a unique common fixed point of A, B, S, T and P.

Proof. From (1.2), it follows that

$$
\left\|x_{n+2}-x_{n+1}\right\| \leq k^{n+1}\left\|x_{1}-x_{0}\right\|
$$

for $n=0,1,2, \ldots$ and so $\left\{x_{n}\right\}$ is a Cauchy sequence in C. Since C is closed subspace of a complete space X, it is also complete and hence the sequence $\left\{x_{n}\right\}$ converges to a point $z \in C$.

We will prove that $P z$ is a unique common fixed point of A, B, S, T and P.

From (1.3), it follows that

$$
\frac{1}{2} P x_{2 n}=A B x_{2 n+1}-\frac{1}{2} A B x_{2 n}
$$

and since A and B are continuous at z, we have

$$
\lim _{n \rightarrow \infty} A B x_{n}=\lim _{n \rightarrow \infty} P x_{2 n}=A B z
$$

Similarly, we also have

$$
\lim _{n \rightarrow \infty} S T x_{n}=\lim _{n \rightarrow \infty} P x_{2 n+1}=S T z
$$

By (1.1), we have

$$
\begin{aligned}
\left\|P x_{2 n}-P x_{2 n+1}\right\| & \leq \alpha\left\|A B x_{2 n}-S T x_{2 n+1}\right\|+\beta\left\|A B x_{2 n}-P x_{2 n}\right\| \\
& +\gamma \max \left\{\left\|S T x_{2 n+1}-P x_{2 n+1}\right\|,\left\|A B x_{2 n}-P x_{2 n+1}\right\|\right\} \\
& +\delta\left\|S T x_{2 n+1}-P x_{2 n}\right\| .
\end{aligned}
$$

This mplies that, as $n \rightarrow \infty$

$$
\begin{aligned}
\|A B z-S T z\| & \leq \alpha\|A B z-S T z\|+\beta\|A B z-A B z\| \\
& +\gamma \max \{\|S T z-S T z\|,\|A B z-S T z\|\} \\
& +\delta\|S T z-A B z\| \\
& =(\alpha+\gamma+\delta)\|A B z-S T z\|
\end{aligned}
$$

which implies that $A B z=S T z$ since $0 \leq \alpha+\gamma+\delta<1$.
By (1.1), we have

$$
\begin{aligned}
\left\|P x_{2 n}-P z\right\| & \leq \alpha\left\|A B x_{2 n}-S T z\right\|+\beta\left\|A B x_{2 n}-P_{x} 2 n\right\| \\
& +\gamma \max \left\{\|S T z-P z\|,\left\|A B x_{2 n}-P z\right\|\right\} \\
& +\delta\left\|S T z-P x_{2 n}\right\|
\end{aligned}
$$

This implies that, as $n \rightarrow \infty$

$$
\begin{aligned}
\|A B z-P z\| & \leq \alpha\|A B z-S T z\|+\beta\|A B z-A B z\| \\
& +\gamma \max \{\|S T z-P z\|,\|A B z-P z\|\}+\delta\|S T z-A B z\| \\
& =\gamma\|A B z-P z\|,
\end{aligned}
$$

which implies that $A B z=P z$ since $0 \leq \gamma<1$. Combining the above results, we have

$$
\begin{equation*}
A B z=S T z=P z \tag{1.7}
\end{equation*}
$$

Since the pair $\{P, A B\}$ is compatible and $A B z=P z$ for some $z \in X$, then by Lemma 1, we obtain
(1.8) $\quad(A B) P z=P^{2} z$.

From (1.1), (1.7) and (1.8), it follows that

$$
\begin{aligned}
\left\|P^{2} z-P z\right\| & \leq \alpha\|A B(P z)-S T z\|+\beta\left\|A B(P z)-P^{2} z\right\| \\
& +\gamma \max \{\|S T z-P z\|,\|A B(P z)-P z\|\} \\
& +\delta\left\|S T z-P^{2} z\right\| \\
& =(\alpha+\gamma+\delta)\left\|P^{2} z-P z\right\|,
\end{aligned}
$$

which implies that $P^{2} z=P z$ since $0 \leq \alpha+\gamma+\delta<1$.
On the other hand, from (1.1), (1.5) and (1.7) it follows that

$$
\begin{aligned}
\|P B z-P z\| & \leq \alpha\|A B(B z)-S T z\|+\beta\|A B(B z)-P B z\| \\
& +\gamma \operatorname{mau}\{\|S T z-P z\|,\|A B(B z)-P z\|\} \\
& +\delta\|S T z-P B z\| \\
& \leq(\alpha+\gamma+\delta)\|B P z-P Z\|,
\end{aligned}
$$

which implies that $B P z=P z$ since $0 \leq \alpha+\gamma+\delta<1$.
By (1.8), we have $A B(P z)=P^{2} z$. Therefore, $A P z=P z$.
Since the pair $\{P, S T\}$ is compatible and $P z=S T z$ for some $z \in X$, then again by Lemma 1, we obtain
(1.9) $\quad S T(P z)=P^{2} z$.

From (1.1), (1.5) and (1.7), it follows that

$$
\begin{aligned}
\|P z-P T z\| & \leq \alpha\|A B z-S T(T z)\|+\beta\|A B z-P z\| \\
& +\gamma \max \{\|S T(T z)-P T z\|,\|A B z-P T z\|\} \\
& +\delta\|S T(T z)-P z\| \\
& \leq(\alpha+\gamma+\delta)\|T P z-P z\|,
\end{aligned}
$$

which implies that $T P z=P z$ since $0 \leq \alpha+\gamma+\delta<1$.
By (19), we have $S T(P z)=P^{2} z$. Therefore, $S P z=P z$. Combining the above results we obtain

$$
A P z=B P z=S P z=T P z=P^{2} z=P z .
$$

Therefore, $P z$ is a common fixed point of A, B, S, T and P.
The uniqueness of the common fixed point $P z$ follows easily from (1.1). This completes the proof.

If we put $B=T=I$ (the identity mapping on C) in Theorem 1, we obtain the following:

Corollary 1. Let C be a nonempty closed convex subset of a Banach space $(X,\|\cdot\|)$ and A, S and P be mappings from C into itself satisfynng the following conditions:
(i) there exnst constants $\alpha, \beta, \gamma, \delta \leq 0$, such that

$$
\begin{aligned}
\|P x-P y\| & \leq \alpha\|A z-S y\|+\beta\|A x-P x\| \\
& +\gamma \max \{\|S y-P y\|,\|A x-P y\|\}+\delta\|S y-P x\|
\end{aligned}
$$

for all $x, y \in C$, where $0 \leq \alpha+\gamma+\delta<1$,
(ii) for some $x_{0} \in C$, there exists a constant $\dot{k} \in[0,1)$ such that

$$
\left\|x_{n+2}-x_{n+1}\right\| \leq k\left\|x_{n+1}-x_{n}\right\|
$$

for all $n=1,2,3, \ldots$, where $\left\{x_{n}\right\}$ is a sequence in C defined by
(iii) $A x_{2 n+1}=\frac{1}{2} P x_{2 n}+\frac{1}{2} A x_{2 n}, S x_{2 n+2}=\frac{1}{2} P x_{2 n+1}+\frac{1}{2} S x_{2 n+1}$,
(iv) the pair $\{P, A\}$ and $\{P, S\}$ are compatible,
(v) A and S are continuous at $z \in C$.

Then the sequence $\left\{x_{n}\right\}$ defined by (iuz) converges to $z \in C$ and $P z$ is a unique common fixed point of A, S and P.

If we put $B=T=A=S=I$ in Theorem 1 , we have the following resull due to Gornickz and Rhoades [10].

Corollary 2. Let C be a nonempty closed convex subset of a Banach space $(X,\|\cdot\|)$ and P be a mapping from C into itself satisfying the followng conditions.
(vi) there exist constants $\alpha, \beta, \gamma, \delta \geq 0,0 \leq \gamma<1$ such that

$$
\begin{aligned}
\|P x-P y\| & \leq \alpha\|x-y\|+\beta\|x-P x\| \\
& +\gamma \max \{\|y-P y\|,\|x-P x\|\}+\delta\|y-P x\|
\end{aligned}
$$

for all $x, y \in C$.
(vii) for some $x_{0} \in C$, there exusts a constant $k \in[0,1)$ such that

$$
\left\|x_{n+2}-x_{n+1}\right\| \leq k\left\|x_{n+1}-x_{n}\right\|
$$

for $n=0,1,2, \ldots$, where $\left\{x_{n}\right\}$ is a sequence in C defined by (viii) $x_{n+1}=\frac{1}{2} P x_{n}+\frac{1}{2} x_{n}$.

Then the sequence $\left\{x_{n}\right\}$ defined by (vnn) converges to a pont $z \in C$ and z is a unqque fixed point of P.

From Corollary 2, we have the following result due to Ciric [4].
Corollary 3 Let C be a nonempty closed convex subset of a Banach space $(X,\|\cdot\|)$ and F be a mapping from C into atself satisfying the following condition:
there exists a constant $k \in[0,1)$ such that

$$
\|P x-P y\| \leq k \max \left\{\|x-y\|, \frac{1}{2}\|x-P y\|, \frac{1}{2}\|y-P y\|, \frac{1}{2}\|x-P x\|, \frac{1}{2}\|y-P x\|\right\}
$$

for all $x, y \in C$ and

$$
\left(\frac{k}{2}\right)^{\alpha}\|x-y\| \leq k\left\|P^{2} x-y\right\| \leq\left(\frac{k}{2}\right)^{\beta}\|x-y\|
$$

for all $x \in C$ and $y \in\{F x, P x, P F x\}$ where $F x=\frac{1}{2}(x+P x)$ and $0 \leq$ $\beta \leq \alpha<1$. Then P has a unique fixed point in C.

Remark 1 Theorem 1 contans some results as special casts, $2 . \epsilon$ Corollary 3 contains Theorem 1 of Goebel and Zlotkuwicz [19] theorems of lseki [12], [19]. Theorem 2.1 of Khan and lmdad [19].

If we replace the condition (1.4) in Theorem 1. by the following condition:
(1.10) $A B=P=I$ and $S T=P=I$,
we obtain the following.
Corollary 4 Let C be a nonempty closed convex subset of a $B a$ nach space $(X,\|\cdot\|)$ and A, B, S, T and P be mappings from C into utself satisfying the conditions (1.1), (1.2), (1.3), (1.5), (1.6) and (1.10). Then the sequence $\left\{x_{n}\right\}$ defined by (1.3) converges to a pont $z \in C$ and z is a unaque common fixed point of A, B, S, T and P.

REMARK 2. Cotollary 4, improves results of Gornickı and Rhoades [10], Khan and lmdad [19], Rehman and Ahmad [26].

REMARK 3 In Theorem 1, if we replace conditions (1.4) and (1.6) by the following conditions.
(1.11) $\quad\|x-A B x\| \geq\|x-S T x\|$, for all $x \in X$
(1.12) A and B are continuous,
(1.13) the pair $\{P, A B\}$ is compatible.

Then Theonem 1 , is still true.
By using the Theorem 1, we have the following:
THEOREM 2 Let C be a nonempty closed convex subset of a $B a-$ nach space $(X,\|\cdot\|)$ and A, B, S, T and $\left\{P_{2}\right\}_{2 \in \Lambda}$ be mappings from C unto atself satisfying conditions (1.2) and (1.6) of Theorem 1 and the following conditzons.
(21) there exist constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$
\begin{aligned}
\left\|P_{\imath} x-P_{\imath} y\right\| & \leq \alpha\|A B x-S T y\|+\beta\left\|A B x-P_{i} x\right\| \\
& +\gamma \max \left\{\left\|S T y-P_{i} y\right\|,\left\|A B x-P_{i} y\right\|\right\}+\delta\left\|S T y-P_{\imath} x\right\|
\end{aligned}
$$

for all $x, y \in C$, for all $i \in \Lambda$ where Λ is an undex set, $0 \leq \alpha+\gamma+\delta<$ 1 and $0 \leq \gamma<1$, a sequence $\left\{x_{n}\right\}$ in C is defined by
(2.2) $A B x_{2 n+1}=\frac{1}{2} P_{2} x_{2 n}+\frac{1}{2} A B x_{2 n}$,

$$
S T x_{2 n+2}=\frac{1}{2} P_{2} x_{2 n+1}+\frac{1}{2} S T x_{2 n+1}
$$

for all $i \in \Lambda$,
(2.3) for all $i \in \Lambda$, the panrs $\left\{P_{i}, A B\right\}$ and $\left\{P_{i}, S T\right\}$ are compatıble,
(2.4) for all $i \in \Lambda, P_{\imath} B=B P_{\imath}, P_{\imath} T=T P_{\imath}, A B=B A, S T=T S$.

Then the sequence $\left\{x_{n}\right\}$ defined by (2.2) converges to $z \in C$ and $P_{2} z$ for all $i \in \Lambda$ is a unique common fixed point of A, B, S, T and $\left\{P_{i}\right\}_{i \in \Lambda}$.

Proof. The proof of Theorem 2 is similar to that of Theorem 1.

Now, we extend Theorem 1, for six mappings. We prove the following:

Theorem 3. Let C be a nonempty closed convex subset of a Banach space $(X,\|\cdot\|$) and A, B, S, T, P and Q be mappings from C into atself satisfynng conditions (1.2), (1.6) of Theorem 1 and the following conditions:
(3.1) there exast constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$
\begin{aligned}
\|P x-Q y\| & \leq \alpha\|A B x-S T y\|+\beta\|A B x-P x\| \\
& +\gamma \max \|S T y-Q y\|,\|A B x-Q y\|\}+\delta\|S T y-P x\|
\end{aligned}
$$

for all $x, y \in C$, where $0 \leq \max \{\alpha+\gamma+\delta, \beta+\delta\}<1$ and $0 \leq \gamma<1$, a sequence $\left\{x_{n}\right\}$ in C is defined by
(3.2) $A B x_{2 n+1}=\frac{1}{2} P x_{2 n}+\frac{1}{2} A B x_{2 n}$, $S T x_{2 n+2}=\frac{1}{2} Q x_{2 n+1}+\frac{1}{2} S T x_{2 n+1}$,
(3.3) the pairs $\{P, A B\}$ and $\{Q, S T\}$ are compatzble,
(3.4) $P B=B P, A B=B A, S T=T S, T Q=Q T$.

Then the sequence $\left\{x_{n}\right\}$ defined by (3.2) converges to a point $z \in C$ and $Q z$ is a unique common fixed point of A, B, S, T, P and Q

Proof. From (1.2) it is clear that $\left\{x_{n}\right\}$ is a Cauchy sequence in C. Since C is closed subspace of a complete space X, it is also complete and hence the sequence $\left\{x_{n}\right\}$ converges to a point $z \in C$. We will prove that $Q z$ is a unique common fixed point of A, B, S, T, P and Q. From (3.2) it follows that

$$
\frac{1}{2} P x_{2 n}=A B x_{2 n+1}-\frac{1}{2} A B x_{2 n}
$$

and since A and B are continuous at z, we have

$$
\lim _{n \rightarrow \infty} A B x_{n}=\lim _{n \rightarrow \infty} P x_{2 n}=A B z
$$

Similary, we also have

$$
\lim _{n \rightarrow \infty} S T x_{n}=\lim _{n \rightarrow \infty} Q x_{2 n+1}=S T z
$$

By (3.1), we have

$$
\begin{aligned}
\left\|P x_{2 n}-Q x_{2 n+1}\right\| & \leq \alpha\left\|A B x_{2 n}-S T x_{2 n+1}\right\|+\beta\left\|A B x_{2 n}-P x_{2 n}\right\| \\
& +\gamma \max \left\{\left\|S T x_{2 n+1}-Q x_{2 n+1}\right\|,\left\|A B x_{2 n}-Q x_{2 n+1}\right\|\right\} \\
& +\delta\left\|S T x_{2 n+1}-P x_{2 n}\right\| .
\end{aligned}
$$

This implies that, as $n \rightarrow \infty$

$$
\|A B z-S T z\| \leq(\alpha+\gamma+\delta)\|A B z-S T z\|,
$$

which implies that $A B z=S T z$ since $0 \leq \alpha+\gamma+\delta<1$.
By (3.1), we have

$$
\begin{aligned}
\left\|P x_{2 n}-Q z\right\| & \leq \alpha\left\|A B x_{2 n}-S T z\right\|+\beta\left\|A B x_{2 n}-P x_{2 n}\right\| \\
& +\gamma \max \left\{\|S T z-Q z\|,\left\|A B x_{2 n}-Q z\right\|\right\} \\
& +\delta\left\|S T z-P x_{2 n}\right\| .
\end{aligned}
$$

This implies that, as $n \rightarrow \infty$

$$
\|A B z-Q z\| \leq \gamma\|A B z-Q z\|
$$

which implies that $A B z=Q z$ since $0 \leq \gamma<1$.
Again by (3.1), we have

$$
\begin{aligned}
\left\|P z-Q x_{2 n+1}\right\| & \leq \alpha\left\|A B z-S T x_{2 n+1}\right\|+\beta\|A B z-P z\| \\
& +\gamma \max \left\{\left\|S T x_{2 n+1}-Q x_{2 n+1}\right\|,\left\|A B z-Q x_{2 n+1}\right\|\right\} \\
& +\delta\left\|S T x_{2 n+1}-P z\right\| .
\end{aligned}
$$

This implies that, as $n \rightarrow \infty$

$$
\|P z-Q z\| \leq(\beta+\delta)\|P z-Q z\|,
$$

which implies that $P z=Q z$ since $0 \leq \beta+\delta<1$. Combining the results we have
(3.5) $A B z=S T z=P z=Q z$.

Since $\{P, A B\}$ is compatible and $A B z=P z$ for some $z \in X$, ther by Lemma 1 , we oblain
(3.6) $(A B) P z=P^{2} z$.

Similarly,
(3.7) $\quad(S T) Q z=Q^{2} z$.

From (3.1), (3.5) and (3.6), it follows that

$$
\left\|P^{2} z-Q z\right\| \leq(\alpha+\gamma+\delta)\left\|P^{2} z-Q z\right\|,
$$

which implies that $P^{2} z=P Q z=Q z$, since $0 \leq \alpha+\beta+\gamma<1$. By (3.1), (3.4) and (3.5), we have

$$
\|P B z-Q z\| \leq(\alpha+\gamma+\delta)\|P B z-Q z\|
$$

Since $0 \leq \alpha+\gamma+\delta<1$, therefore, we have $B P z=B Q z=Q z$.
By (3.6), we have $(A B) P z=P^{2} z$. Therefore, $A Q z=Q z$.
From (3.1), (3.5), (3.7), we have

$$
\left\|P z-Q^{2} z\right\| \leq(\alpha+\gamma+\delta)\left\|P z-Q^{2} z\right\|
$$

Since $0 \leq \alpha+\gamma+\delta<1$, therefore, we have $Q^{2} z=P z=Q z$.
Finally from (3.1), (3.4) and (3.5), it follows that

$$
\|P z-Q T z\| \leq(\alpha+\gamma+\delta)\|T Q z-P z\|,
$$

which implies that $T Q z=P z=Q z$, since $0 \leq \alpha+\gamma+\delta<1$.
By (3.7), we have $(S T) Q z=Q^{2} z$. Therefore, we have $S Q z=Q z$.
Combining the above results we oblain

$$
A Q z=B Q z=S Q z=T Q z=P Q z=Q^{2} z=Q z
$$

Therefore, $Q z$ is a common fixed point of A, B, S, T, P and Q. The uniqueness of the common fixed point $Q z$ follows easily from (3.1). This completes the proof.

In Thoorem 3 , if we put $B=T=I$ (the identity map on C) we obtain the following result due to Cho, Fisher and Kang [3].

Corollary 5 Let C be a nonempty closed convex subset of a Banach space $(X,\|\cdot\|)$ and A, S, P and Q be the mappings from C into itself satrsfynng the following conditions :
(1) there exists constants $\alpha, \beta, \gamma, \delta \geq 0$ such that

$$
\begin{aligned}
\|P x-Q y\| & \leq \alpha\|A x-S y\|+\beta\|A x-P x\| \\
& +\gamma \max \{\|S y-Q y\|,\|A x-Q y\|\}+\delta\|S y-P x\| .
\end{aligned}
$$

for all $x, y \in C$, where $0 \leq \max \{\alpha+\gamma+\delta, \beta+\delta\}<1,0 \leq$ $\gamma<1$,
(2) for some $x_{0} \in C$, there exusts a constant $k \in[0,1)$ such that

$$
\left\|x_{n+2}-x_{n+1}\right\| \leq k\left\|x_{n+1}-x_{n}\right\|
$$

for $n=0,1,2, \ldots$, where $\left\{x_{n}\right\}$ is a sequence in C defined by
(3) $A x_{2 n+1}=\frac{1}{2} P x_{2 n}+\frac{1}{2} A x_{2 n}, S x_{2 n+2}=\frac{1}{2} Q x_{2 n+1}+\frac{1}{2} S x_{2 n+1}$,
(4) the pairs $\{P, A\}$ and $\{Q, S\}$ are compatible,
(5) A and S are contrnuous at the point $z \in C$.

Then the sequence $\left\{x_{n}\right\}$ defined by (3) converges to a point $z \in C$ and $Q z$ is a unique common fixed pornt of A, S, P and Q.

Remark 3. If we put $P=Q$ in Theorem 3, it reduces to Theorem 1.

References

[1] S Abbaou1, Deux th or mes du pornt fixe, Bull Soc.Math.Belg.Series B 43 (1991), 117-121
[2] R K Bose, and R.N Mukherjee, Approxumating fixed points of some mappings, Proc.Amer Math Soc 82 (1981), 603-606
[3] Y.J Cho, B. Fisher, and S M Kang, Common fixed pont theorems for Mann type iteratrons, Math Japonca 483 (1998), 385, 390.
[4] L Cric, A generalization of Banach's contractzon princtple, Proc. Amer.Math Soc 45 (1974), 267 - 273
[5] K.M. Das, S.P. Singh and B Watson, A note on Mann iteration for quasinonexponszve mappings, Nonlinear Analysis 6 (1981), 675-676
[6] W G Doston and HF. Senter, Approximatzng fixed points of nonexpansive mappings, Proc. Amer math Soc 44 (1974), 375-379
[7] G Emmanuele, Convergence of the Mann-Ishikawa iteratzve process for nonexpanszve mappings, Nonlinear analysis 6 (1982), 1135-1141.
[8] G Emmanuele, A remark on my paper:"Convergence of the Mann-Ishikawa iterative process for nonexpansive mapping", Nonlinear Analysıs 7 (1983), 473 - 474.
[9] K Goebel and E. Zlotkiewicz, Colloq Math 23 (1971), 103-106
[10] J. Gormickı and B E Rohades, A general fixed point theorem for involutions, to appear in India J Pure Appl.Math
[11] M D Guay and K L Singh, Convergence of sequences of aterations for a pair of mappzngs, J. Math Phy Sci 18 (1984), 461-472
[12] K Iseki, Faxed Pont Theonems in Banach Spaces, Math Simmar Notes. Kobe Univ. 2 (1974), 11 - 13.
[13| K. Isekı, Math Balkanica 5 (1975), 143-144
[14] S. Ishıkawa, Fixed ponts by a new ateration method, Proc Amer Math Soc 44 (1974), 147-150
[15] S. Ishikawa, Fuxed points and vterations of a nonexpansive mapping in a Banach space, Proc Amer Math Soc. 59 (1976), $65-71$
[16] G Jungck, compatible mapping and common fixed points, Internat. J Math and Math Sc 9 (1986), 771-779
(17) L. A. Khan. Fuced pounts by Ishikawn atenates in metrec binear spaces, Math Rep Toyama Univ 12 (1989), 57-63
[18] M.S Khan, Fuxed points and their appioxumation on Banach spaces for certant commuteng mappungs, Glasgow Math J 23 (1982), 1-6.
[19] M.S Khan, M Imdad, J Austral Math Soc. 37 (1984), 169-177
[20] M S Khan, M Imdad and S Sessa, A coincidence theorem in normed linear spaces, Libertas Math 6 (1986), 83-94
[21] M A Krasnoselskı, Two remarks about the method of successive approximatron, Uspehı Mat Nauk 63 (1955), 123-127
[22] W R Mann, Mean value methods un ateration, Proc.Amer Math Soc 4 (1953), 506-510
[23] S Massa, Fzxed pornt approximatzon for quasi-nonexpansive mappings, Le Mathernatiche 37 (1982), 3-7
[24] S VR Naidu and J R. Prasad, Ishikawa iterates for a pair of maps, Indian J pure Appl Math 17 (1986), 193-200
[25] S A Naimapally and K. L Singh, Extenswons of some fixed point theorems of Rhodes, J Math Anal appl 96 (1983), 437-446
[26] F U. Rehman and B Ahmad, J Nat Scl. and Math 30 (1990), 45-50.
[27] B E Rhoades, Extenswons of some fixed pount theorems of 'Curvc', Maltı and Pal,Math Seminar Notes, Kobe Univ 6 (1978), 41-46
[28] B E Rhoades, Some fixed point ateration procedures, Internat J Math and Math Scı. 14 (1991), 1-16
[29] B E Rhoades, A gencral pranctple for Mann tteration, to appear in Indian J Pure Appl Math
[30] B E. Rhoades, A general principle for Ishikawa iteration, preprint
[31] B.E Rhoades, A fixed point theorem for a Mann-type ateration involving two compatzble anvoluions, preprint
[32] H Schaefer, Uber die Methode sukzessuve., Approximationen, Iber Deutch.Math Verem 59 (1957), 131-140
[33] S Sessa, On a weak commutativity condition in fixed point consuderations, Publ.Inst Math 46(32) (1982), 149-153

Sushil Sharma
Department of Mathematics
Madhav Science College
Ujjain(M.P.), India
Bhavana Deshpande
Department of Mathematics
Govt.Arts and Science College
Ratlam(M.P.), India
E-mail: makdag@bim.cumhuriyet.edu.tr

