FUZZY D-CONTINUOUS FUNCTIONS ### METIN AKDAĞ ABSTRACT In this paper, fuzzy D-continuous function is defined Some basic properties of this continuity are summarized, and sufficient conditions on domain and/or ranges implying fuzzy D-continuity of fuzzy D-continuous functions are given. Also fuzzy D-regular space is defined and by using fuzzy D-continuity, the condition which is equivalent to fuzzy D-regular space, is given #### 1. Introduction The concept of fuzzy sets was introduced by Zadeh in his classicical paper [12]. Therefore many investigations have been carried out, in the general theorical field and also in different application sides, based on this concept. The idea of fuzzy topological spaces was introduced by Chang [1]. The idea is more or less a generalization of ordinary topological spaces. Different aspect of such spaces have been developed by several investigations. In this paper, we first generalize the idea of continuity as a local property in fuzzy setting. Then we generalize mainly the concept of D-continuity of a function due to J. K. Kohli [4] in fuzzy setting. It can be seen that fuzzy continuity implies fuzzy D-continuity. Also it can be seen that weaker forms of fuzzy continuity implies weaker forms of fuzzy D-continuity, but not conversely Finally, it can be seen that Received September 4, 2000 Revised April 2, 2001 ²⁰⁰⁰ Mathematics Subject Classification 54A40, 04A72 Key words and phrases fuzzy continuity, fuzzy D-continuity, fuzzy regular space, fuzzy D-regular space fuzzy continuity and fuzzy *D*-continuity are equivalent in case when the range space of function is fuzzy *D*-regular space. Helderman [3] introduced some new regularity axioms and studied the class of D-regular spaces. Also the class of D-Hausdorff spaces, was introduced by J. K. Kohli [4], was shown to constitute on appropriate class of spaces in which D-continuous functions have strongly closed graphs. Then it turns out that the class of D-regular spaces is precisely the class of spaces in which the concepts of a continuous function and D-continuous function coincide [4, Theorem 4.1.]. In this paper, the class of fuzzy D-regular spaces is introduced and some properties are studied in Section 3. Also it can be seen that the class of fuzzy D-regular spaces is precisely the class spaces in which the concepts of a fuzzy continuous function and fuzzy D-continuous function coincide [see Theorem 25] #### **Preliminaries** DEFINITION 1 Let X be a nonempty set. Then a fuzzy set in X is an element in $[0,1]^X$, i.e. a function from X into [0,1] ([1]) DEFINITION 2 Let α and β be two fuzzy sets in X. Then we have the following properties for fuzzy sets α and β : $$lpha \leq eta \Leftrightarrow lpha(x) \leq eta(x) \;\; ext{for all} \;\; x \in X,$$ $lpha = eta \Leftrightarrow lpha(x) = eta(x) \;\; ext{for all} \;\; x \in X,$ $\mu = lpha \lor eta \Leftrightarrow \mu(x) = \max \left\{ lpha(x), eta(x) ight\} \;\; ext{for all} \;\; x \in X,$ $\delta = lpha \land eta \Leftrightarrow \delta(x) = \min \left\{ lpha(x), eta(x) ight\} \;\; ext{for all} \;\; x \in X,$ $lpha = eta' \Leftrightarrow lpha(x) = 1 - eta(x) \;\; ext{for all} \;\; x \in X.$ More generally, for a family of fuzzy sets $\mu = \{\mu_i \mid i \in I\}$, the intersection $\beta = \wedge \mu_i$ and the union $\alpha = \vee \mu_i$, are defined as $\alpha(x) = Sup\{\mu_i(x) : x \in X\}$ and $\beta(x) = Inf\{\mu_i(x) : x \in X\}$, for $x \in X$ ([1]). DEFINITION 3 A fuzzy set in X is called a fuzzy point if it takes the value 0 for all $y \in X$ except one, say, $x \in X$ If it's value at x is $\alpha(0 < \alpha \le 1)$, we denote this fuzzy point by x_{α} where the point x is called its support. We can write the fuzzy point x_{α} , with $$x_{\alpha}(y) = \begin{cases} \alpha & ; & \text{if } y = x \\ 0 & ; & \text{if } y \neq x \end{cases}$$ and we can denote the support of x with supp $x_{\alpha} = x$ ([7]). DEFINITION 4 A fuzzy topology is a family τ of fuzzy sets in X which satisfies the following conditions: - (a) $0, 1 \in \tau$; - (b) If $\alpha, \beta \in \tau$, then $\alpha \land \beta \in \tau$; - (c) If $\mu_i \in \tau$, for each $i \in I$, then $\forall_{i \in I}$, $\mu_i \in \tau$, τ is called a fuzzy topology for X, and the pair (X, τ) is a fuzzy topological space (shortly f t.s.). Every member of τ is called a fuzzy open set. A fuzzy set is called a fuzzy closed set iff its complement is open ([7]). DEFINITION 5. Let (X, τ) be a f.t.s. and $\alpha \in I^X$ The closure of α is denoted $\overline{\alpha}$ and given by $\overline{\alpha} = \wedge \{\beta : \beta \text{ is a fuzzy closed set and } \alpha \leq \beta \}$. The *interior* of α is denoted by $int\alpha$ or $\overset{\circ}{\alpha}$ and given by $\overset{\circ}{\alpha} = \vee \{\beta : \beta \text{ is a fuzzy open set and } \beta \leq \alpha \}$ ([5]). DEFINITION 6 A fuzzy set α in a f.t.s., (X, τ) is called a neighborhood of fuzzy point x_{∂} if there exists $\beta \in \tau$ such that $x_{\partial} \in \beta$ and $\beta \leq \alpha$. A neighborhood α of x_{∂} is said to be open if α is fuzzy open. The family consisting of all the neighborhoods of x_{∂} is called the system of neighborhoods of x_{∂} ([2]). DEFINITION 7 A fuzzy set α in a f t s., (X,τ) is called Q-neighborhood of x_{∂} if there exists $\beta \in \tau$ such that $x_{\partial} \in \beta$ and $\beta \leq \alpha$. The family consisting of all the Q-neighborhds of x_{∂} is called the system of Q-neighborhds of x_{∂} . For fuzzy sets here α and β , $\alpha \in \beta$ mean that $\alpha(y) + \beta(y) > 1$ for at least one point y in X ([2]). DEFINITION 8. Let X and Y be two f.t.s. and let f be a function from X to Y. Also let β be a fuzzy set in Y. Then the *inverse* of β , written as $f^{-1}(\beta)$, is a fuzzy set in X which is defined by $f^{-1}(\beta)(x) = \beta(f(x))$ for all x in X. Conversely, let α be a fuzzy set in X. The image of α , written as $f(\alpha)$, is a fuzzy set in Y which is defined by $$f(\alpha)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \{\alpha(x)\} : \text{ if } f^{-1}(y) \text{ is nonempty} \\ 0 : \text{ otherwise,} \end{cases}$$ for all y in Y where $f^{-1}(y) = \{x : f(x) = y\}$ ([5]). DEFINITION 9. Let (X,τ) and (Y,τ') be two f.t.s., $f: X \to Y$ be a function and x_{α} be a fuzzy point in X. For each Q-neighborhood μ of $f(x_{\alpha})$, if there is a Q-neighborhood δ of x_{α} , such that $f(\delta) \leq \mu$, then it is called that f is fuzzy continuous at x_{α} ([8]). DEFINITION 10 Let $S = \{S_n : n \in D\}$ be a fuzzy net in X. S is said to be *quasi-coincident* with α if for each $n \in D$, S_n is quasi-coincident with α . Also S is said to be eventually quasi-coincident with α if there is an element m of D such that, if $n \in D$ and $n \geq m$ then S_n is quasi-coincident with α ([7]). DEFINITION 11 A net S in a f.t.s., (X, τ) is said to be converge to a fuzzy point x_{α} in X relavite to τ if S is eventually quasi-coincident with each Q-neighborhood of x_{α} ([7]). DEFINITION 12. Let (X,τ) be a f.t.s. and $\mu \in I^X$. If $\mathring{\mu} = \mu$, then it is called that μ is a fuzzy regular open set (f.r.o.) in X. If $\mu = \mathring{\mu}$ then it is called that μ is a fuzzy regular closed set (f.r.c.) ([5]). DEFINITION 13 A f.t.s. X is called a fuzzy regular space if for each fuzzy point x_{α} in X, and if for every fuzzy open set μ properly $x_{\alpha} \in \mu$, there exists a fuzzy open set η in X such that $x_{\alpha} \in \eta$ and $\eta \leq \bar{\eta} \leq \mu$ ([6]). DEFINITION 14 A f.t.s. X is called a fuzzy almost regular space if for each f.r.o. set μ in X and for each fuzzy point x_{α} properly x_{α} quasi-coincident with μ , there exists a fuzzy regular open set β in X such that $x_{\alpha} \in \beta$ and $\beta \leq \bar{\beta} \leq \mu$ ([6]). DEFINITION 15 A f.t.s. X called a fuzzy semi-regular space if for each fuzzy open set μ in X and for every fuzzy point $x_{\alpha} \in \mu$, there exists a fuzzy open set β in X such that $x_{\alpha} \in \beta$ and $\beta \leq \mathring{\bar{\beta}} \leq \mu$ ([6]). It can be seen from above definitions that a fuzzy regular space is a fuzzy semi-regular and a fuzzy almost regular space. DEFINITION 16 A fuzzy almost regular space is a fuzzy semi-regular space if and only if it is a fuzzy regular space ([6]). DEFINITION 17 A function $f: X \to Y$ is said to be fuzzy continuous (f c.) at x_{α} if for each fuzzy open set β in Y with $f(x_{\alpha}) \in \beta$, there is a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \beta$. The function which is fuzzy continuous at each point is called fuzzy continuous ([5]). DEFINITION 18 A function $f: X \to Y$ is said to be fuzzy almost continuous (f.a.c.) at x_{α} if for each fuzzy open set β in Y with $f(x_{\alpha}) \in \beta$, there is a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \mathring{\bar{\beta}}$. The function which is fuzzy continuous at each point is called fuzzy continuous ([5]) ## 2. Fuzzy D-continuous funtions DEFINITION 19 A fuzzy set in X is a fuzzy G_{δ} -set if it is a countable intersection of fuzzy open sets DEFINITION 20 A fuzzy set in X is a fuzzy F_{σ} -set if it is a countable union of fuzzy closed sets. The coplement of a fuzzy G_{δ} -set is a fuzzy F_{σ} -set and vice versa. LEMMA 1 A fuzzy F_{σ} -set can be written as the union of an increasing sequence $\sigma_1 \leq \sigma_2 \leq \cdots$ of fuzzy closed sets (Hence, a fuzzy G_{δ} -set can be written as the intersection of a decreasing sequence of fuzzy open sets.). PROOF. It is clear from the definitions 17 and 18. DEFINITION 21 A function $f: X \to Y$ is said to be fuzzy D-continuous (f.D.c.) at x_{α} if for each fuzzy open F_{σ} -set β in Y with $f(x_{\alpha}) \in \beta$, there is a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \beta$. The function which is fuzzy D-continuous at each point is called fuzzy D-continuous. THEOREM 1. Let $f: X \to Y$ be a function. If f is fuzzy continuous, then f is f.D.c. PROOF. Since each fuzzy open F_{σ} -set is fuzzy open, the proof is clear. Example 1 Let X be a nonempty set and $\tau = \{0,1,\alpha\}$ be a fuzzy topology on X with $\alpha(x) = \frac{11}{30}$. Let $\tau' = \{0,1,\beta_n : n \in N\}$ where for each $n \in N$ and for all $x \in X$, $\beta_n(x) = \frac{1}{n}$ for all $x \in X$. Then the identity mapping $f: (X,\tau) \to (X,\tau')$ is f.D.c. at $x_{\left(\frac{21}{30}\right)}$, but not f.c. at $x_{\left(\frac{21}{30}\right)}$. PROOF. For $\beta_3 \in \tau'$ with $f(x_{\frac{21}{30}}) \in \beta_3$, $x_{\frac{21}{30}} \in \alpha$ and $f(\alpha) \nleq \beta_3$ so is not f.c. at $x_{\frac{21}{30}}$. But, if we obtain the family of nonempty fuzzy open F_{σ} -sets Φ in (X, τ') , then we arrive that $\Phi = \{1, \beta_2\}$. Thus, for $f(x_{\frac{21}{30}}) \in 1$, $x_{\frac{21}{30}} \in 1$ and $f(1) \leq 1$ and for $f(x_{\frac{21}{30}}) \in \beta_2$, $x_{\frac{21}{30}} \in \alpha$ and $f(\alpha) \leq \beta_2$ so f is f.D.c. at $x_{\frac{21}{30}}$. THEOREM 2 Let $f: X \to Y$ be a function. Then the following statements are equivalent: - (a) f is f.D.c.; - (b) If β is a fuzzy open F_{σ} -set in Y, then $f^{-1}(\beta)$ is a fuzzy open set in X; - (c) If σ a fuzzy closed G_{δ} -set in Y, then $f^{-1}(\sigma)$ is a fuzzy closed set in X. PROOF $(a) \Rightarrow (b)$: If β is a fuzzy open F_{σ} -set in Y, then for each fuzzy point x_{α} in X with $x_{\alpha} \in f^{-1}(\beta)$, $f(x_{\alpha}) \in \beta$. From (a), there is a fuzzy open set μ in X with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \beta$. Thus $x_{\alpha} \in \mu$ and $\mu \leq f^{-1}(\beta)$ so $f^{-1}(\beta)$ is fuzzy of x_{α} . Thus $f^{-1}(\beta)$ is a fuzzy open set in X. - $(b) \Rightarrow (a)$: Let β be a fuzzy open F_{σ} -set in Y with $f(x_{\alpha}) \in \beta$. From (b), $f^{-1}(\beta)$ is a fuzzy open set in X with $x_{\alpha} \in f^{-1}(\beta)$. Thus $f(\mu) \leq \beta$ with $f^{-1}(\beta) = \mu$. - $(b) \Rightarrow (c)$: Let σ be a fuzzy closed G_{δ} -set in Y, then 1σ is a fuzzy open F_{σ} -set and so from (b), $f^{-1}(1 \sigma) = 1 f^{-1}(\sigma)$ is fuzzy open. Thus $f^{-1}(\sigma)$ is fuzzy closed in X. - $(c) \Rightarrow (b)$: Let β be a fuzzy open F_{σ} -set. Then 1β is a fuzzy closed G_{δ} -set and so $f^{-1}(1 \beta) = 1 f^{-1}(\beta)$ is fuzzy closed. Thus $f^{-1}(\beta)$ is a fuzzy open set in X. PROPOSITION 1. Let $f: X \to Y$ be a function. If f is f D.c., then for each fuzzy point x_{α} in X and each fuzzy net $\{S_n : n \in D\}$ which converges to x_{α} , the fuzzy net $\{f(S_n) : n \in D\}$ is eventually quasicoincident with each fuzzy open F_{σ} -set β with $f(x_{\alpha}) \in \beta$. **PROOF.** By the theorem 2., f is f.D.c. \Leftrightarrow if β is a fuzzy open F_{σ} -set in Y, then $f^{-1}(\beta)$ is a fuzzy open set in X. Now, let $\{S_n : n \in D\}$ be a fuzzy net in X which converges to x_{α} and let β be a fuzzy open F_{σ} -set in Y with $f(x_{\alpha}) \in \beta$. Then $f^{-1}(\beta)$ is a fuzzy open set with $x_{\alpha} \in f^{-1}(\beta)$. Thus $\{S_n : n \in D\}$ is eventually quasi-coincident with β . Hence $\{f(S_n) : n \in D\}$ is eventually quasi-coincident with β . **DEFINITION 22.** Let $f: X \to Y$ be any function. Then the function $g: X \to X \times Y$, defined by g(x) = (x, f(x)), is called the *graph function* with respect to f([11]). THEOREM 3. Let $f: X \to Y$ be a function such that the graph function g is f.D.c.. Then f is f.D.c.. **PROOF.** Let x_{α} be a fuzzy point in X and let β be a fuzzy open F_{σ} -set with $f(x_{\alpha}) \in \beta$. Since $1 - \beta$ is a fuzzy closed G_{δ} -set, $1 \times (1 - \beta) = (1 \times 1) - P_2^{-1}(\beta)$ is a fuzzy closed G_{δ} -set. Thus $P_2^{-1}(\beta)$ is a fuzzy open F_{σ} -set of $X \times Y$. Since g is f.D.c., there is a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $g(\mu) \leq P_2^{-1}(\beta)$. It follows that $P_2(g(\mu)) = f(\mu)$ and $f(\mu) \leq \beta$ and $g(x_{\alpha}) \in P_2^{-1}(\beta)$, and so f is f.D.c.. THEOREM 4 Let $f: X \to Y$ be any function and A be a subset of X. If f is f.D.c., then the induced $f_{|A}: A \to Y$ is f.D.c.. PROOF Let x_{α}' be a fuzzy point in A with $$x_{\alpha}'(y) = \begin{cases} \alpha & ; & \text{if } y = x \\ 0 & ; & \text{if } y \neq x \end{cases}$$ and β be any fuzzy open F_{σ} -set in Y with $f_{|A}(x_{\alpha}') \in \beta$. If we define fuzzy point x_{α} in X as $$x_{\alpha}(y) = \begin{cases} \alpha & ; & \text{if } y = x \\ 0 & ; & \text{if } y \neq x, \end{cases}$$ then $f(x_{\alpha}) \in \beta$. Since f is f.D c. from X to Y, there exists a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \beta$. Then $\mu_{|A} = \mu_{A}$ is fuzzy open in A and $f_{|A}(\mu_{A}) \leq \beta$ where $\mu_{A}: A \to [0,1]$. Thus $f_{|A}$ is f.D.c.. THEOREM 5 If $f: X \to Y$ is f.c. and $g: Y \to Z$ is f.D.c., then $g \circ f$ is f.D.c.. PROOF Let σ be a fuzzy closed G_{δ} -set in Z. Then $g^{-1}(\sigma)$ is fuzzy closed in Y and since f is f.c., $(g \circ f)^{-1}(\sigma) = f^{-1}(g^{-1}(\sigma))$ is fuzzy closed in X. Thus $g \circ f$ is f.D.c.. THEOREM 6. Let $f: X \to Y$ be either a fuzzy open or a fuzzy closed surjection and let $g: Y \to Z$ be any function such that $g \circ f$ is f.D.c.. Then g is f.D.c.. PROOF Suppose f is fuzzy open (respectively, fuzzy closed), and let β be a fuzzy open F_{σ} -set in Z (respectively, β be a fuzzy closed G_{σ} -set). Since $g \circ f$ is f.D.c., $(g \circ f)^{-1}(\beta) = f^{-1}(g^{-1}(\beta))$ is fuzzy open (respectively, fuzzy closed) and since f is a surjection, $f(f^{-1}(g^{-1}(\beta))) = g^{-1}(\beta)$ is fuzzy open (respectively, fuzzy closed) and consequently g is f.D.c.. DEFINITION 23 Let (X,τ) be a fuzzy topological space. Let R be equivalence relation on X. Let X/R be the quotient set, and let $P: X \to X/R$ be the projection (quotietent map). Let ν be the family of fuzzy sets in X, defined by $\nu = \{\beta \mid P^{-1}(\beta) \in \tau\}$. Then ν is, obviously a fuzzy topology, called the quotient fuzzy topology for X/R and $(X/R,\nu)$ is called the quotient fuzzy space of (X,τ) (relative to the quotient map). Here P is f.c. ([8]). THEOREM 7 Let $f: X \to Y$ be a quotient map. Then a function $g: Y \to Z$ is f D.c. if and only if $g \circ f$ is f D.c. PROOF (\Rightarrow) : It is immediate from the Theorem 6. (\Leftarrow) : Let β be a fuzzy open F_{σ} -set in Z. Then $(g \circ f)^{-1}(\beta) = f^{-1}(g^{-1}(\beta))$ is fuzzy open in X. Since f is a quotient map, $g^{-1}(\beta)$ is fuzzy open in Y and so g is f.D.c.. THEOREM 8 For each $\alpha \in I$, let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a function, and let $f: \prod X_{\alpha} \to Y_{\alpha}$ be a function defined by $f[(x_{\alpha})] = (f_{\alpha}(x_{\alpha}))$ for each fuzzy point (x_{α}) in $\prod X_{\alpha}$. If f is f.D.c., then each f_{α} is f.D c.. PROOF Let $\alpha_0 \in I$, and let σ_{α_0} be a fuzzy closed G_{δ} -set in Y_{α_0} . Then $\sigma_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} 1_{\alpha}$ is a fuzzy closed G_{δ} -set in $\prod Y_{\alpha}$ where $\alpha_0 \in I$. Since f is f.D.c., by the Theorem 2, $f^{-1}(\sigma_{\alpha_0} \times (\prod 1_{\alpha})) = f^{-1}(\sigma_{\alpha_0}) \times (\prod 1_{\alpha})$ is fuzzy closed in $\prod X_{\alpha}$ where $\alpha \neq \alpha_0$. Consequently, $f_{\alpha_0}^{-1}(\sigma_{\alpha_0})$ is fuzzy closed in X_{α_0} and so X_{α_0} is f.D.c.. THEOREM 9. Let $f: X \to \prod X_{\alpha}$ be a function into a fuzzy product space. If f is f D.c., then for each $P_{\alpha}: \prod X_{\alpha} \to X_{\alpha}$, $P_{\alpha} \circ f$ is f.D.c.. PROOF Let σ_{α_0} be a fuzzy closed G_{δ} -set in X_{α_0} . Then $(P_{\alpha_0} \circ f)^{-1}(\sigma_{\alpha_0}) = f^{-1}(P_{\alpha_0}^{-1}(\sigma_{\alpha_0})) = f^{-1}(\sigma_{\alpha_0}x \prod 1_{\alpha})$. Since f is f.D.c. and since $\sigma_{\alpha_0} \times \prod 1_{\alpha}$ is a fuzzy closed G_{δ} -set, then $f^{-1}(\sigma_{\alpha_0} \times \prod 1_{\alpha})$ is fuzzy closed in X. By the Theorem 2, $P_{\alpha_0} \circ f$ is f.D.c.. DEFINITION 24 A function $f: X \to Y$ is said to be fuzzy almost D-continuous (f.a.D.c.) at x_{α} if for each fuzzy open F_{σ} -set β with $f(x_{\alpha}) \in \beta$, there exists a fuzzy open set μ , with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \frac{\circ}{\beta}$. A function which is a f.a D.c. at each point is called f.a.D.c. THEOREM 10. Let $f: X \to Y$ be a function. If f is f.D.c., then f is f.a.D.c.. **PROOF.** Since for each fuzzy open set β , $\beta \leq \frac{\circ}{\beta}$, the proof is clear. THEOREM 11. Let $f: X \to Y$ be a function. Then the following statements are equavelent: - (a) f is f.a.D.c.; - (b) For each fuzzy regular open F_{σ} -set β in Y, $f^{-1}(\beta)$ is fuzzy open in X; - (c) For each fuzzy regular closed G_{σ} -set β in Y, $f^{-1}(\beta)$ is fuzzy closed in X; - (d) For each fuzzy regular open F_{σ} -set β in Y and for each x_{α} with $f(x_{\alpha}) \in \beta$, there is a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \beta$; - (e) For every fuzzy open F_{σ} -set β in Y, $f_{\underline{-1}(\beta)} \leq [f^{-1}(\overline{\beta})]$; - (f) For every fuzzy closed G_{δ} -set β in Y, $[f^{-1}(\tilde{\beta})] \leq f^{-1}(\beta)$. PROOF. (a) \Rightarrow (b): Let be β a fuzzy regular open F_{σ} -set in Y, then for each fuzzy point x_{α} in X with $x_{\alpha} \inf^{-1}(\beta)$, we have $f(x_{\alpha}) \in \beta$. From (a), there is a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \overline{\beta}$. Since $\beta = \overline{\beta}$, $f(\mu) \leq \beta$. Thus $x_{\alpha} \in \mu$ and $\mu \leq f^{-1}(\beta)$. So $f^{-1}(\beta)$ is Q-neighborhood of x_{α} and $f^{-1}(\beta)$ is fuzzy open in X. - $(b) \Rightarrow (c)$: Let β be a fuzzy regular closed G_{δ} -set in Y, then 1β is a fuzzy regular open F_{σ} -set in Y. So $f^{-1}(1 \beta) = 1 f^{-1}(\beta)$ is fuzzy open in X. Thus, from (b), $f^{-1}(\beta)$ is fuzzy closed in X. - $(c) \Rightarrow (d)$: Let β be a fuzzy regular open F_{σ} -set in Y with $f(x_{\alpha}) \in \beta$. From (c), $1-\beta$ is a fuzzy regular closed G_{δ} -set in Y and $f^{-1}(1-\beta) = 1 f^{-1}(\beta)$ is fuzzy closed in X. Thus $f^{-1}(\beta)$ is fuzzy open in X and $x_{\alpha} \inf^{-1}(\beta)$. Let $\mu = f^{-1}(\beta)$, then $f(\mu) \leq \beta$. - $(d) \Rightarrow (b)$: Let β be a fuzzy regular open F_{σ} -set in Y and $x_{\alpha} \in f^{-1}(\beta)$. Then, $f(x_{\alpha}) \in \beta$ and from (d), there is a fuzzy open set μ such that $x_{\alpha} \in \mu$ and $f(\mu) \leq \beta$. Thus $x_{\alpha} \in \mu$ and $\mu \leq f^{-1}(\beta)$. So $f^{-1}(\beta)$ is a fuzzy open set in X. $(d)\Rightarrow (e)$: Let β be a fuzzy open F_{σ} -set in Y. Then $\overline{\beta}$ is a fuzzy regular open F_{σ} -set and $f^{-1}(\beta) \leq f^{-1}(\overline{\beta})$. From $[(d)\Rightarrow (b)]$, $f^{-1}(\overline{\beta})$ is fuzzy open. Thus $f^{-1}(\beta) \leq [f^{-1}(\overline{\beta})]$. $(e)\Rightarrow (f)$: Let β be a fuzzy closed G_{δ} -set in Y. Then $1-\beta$ is a fuzzy open F_{σ} -set in Y. From (e), $f^{-1}(1-\beta)=1-f^{-1}(\beta)\leq [f^{-1}(\overline{1-\beta})]=[1-f^{-1}(\overline{\beta})]=[1-f^{-1}(\overline{\beta})]$. Thus, $f^{-1}(\beta)\leq f^{-1}(\beta)$. $(f)\Rightarrow (a)$: Let β be a fuzzy open F_{σ} -set in Y with $f(x_{\alpha})\in \beta$. Then $1-\beta$ is fuzzy closed G_{δ} -set in Y. From (f), $[f^{-1}(1-\beta)]\leq 1-f^{-1}(\beta)$ $\Rightarrow [f^{-1}(1-\beta)]\leq 1-f^{-1}(\beta)\Rightarrow 1-f^{-1}(\overline{\beta})\leq 1-f^{-1}(\beta)\Rightarrow 1-f^{-1}(\overline{\beta})\leq 1-f^{-1}(\beta)\Rightarrow 1-f^{-1}(\overline{\beta})\leq 1-f^{-1}(\beta)\Rightarrow 1-f^{-1}(\overline{\beta})\leq 1-f^{-1}(\beta)\Rightarrow 1-f^{-1}(\overline{\beta})\leq 1-f^{-1}(\beta)\Rightarrow 1-f^{-1}(\overline{\beta})$. Thus f is f.a D.c. at x_{α} . PROPOSITION 2 Let $f: X \longrightarrow Y$ be a function. If f is f.a.D.c., then for each fuzzy point x_{α} in X and for each fuzzy net $S = \{S_n : n \in D\}$ which converges to x_{α} , the fuzzy net $f(S) = \{f(S_n) : n \in D\}$ is eventually quasi-coincident with each fuzzy regular open F_{σ} – set, β with $f(x_{\alpha}) \in \beta$. PROOF Let $S = \{S_n : n \in D\}$ be a fuzzy net in X which converges to x_{α} and let β be a fuzzy regular open F_{σ} -set in Y with $f(x_{\alpha}) \in \beta$. Then, from the Theorem 11, $f^{-1}(\beta)$ is a fuzzy open set in X with $x_{\alpha} \inf^{-1}(\beta)$. Thus, since S is eventually quasi-coincident with $f^{-1}(\beta)$, $f(S) = \{f(S_n) : n \in D\}$ is eventually quasi-coincident with β . THEOREM 12 Let $f: X \to Y$ be a f.c mapping. If $g: Y \to Z$ is f.a.D.c., then $g \circ f$ is f.a.D.c.. PROOF Let β be a fuzzy regular closed G_{δ} -set in Z. Then, by the Theorem 11, $g^{-1}(\beta)$ is fuzzy closed in Y. Since f is f.c., $f^{-1}(g^{-1}(\beta)) = (g \circ f)^{-1}(\beta)$ is fuzzy closed in X. Thus, $g \circ f$ is f.a.D.c.. COROLLAY 1 If $f: X \to Y$ is f.c., then f is f.a.D.c.. PROOF. The proof is clear from the definitions. THEOREM 13. If $f: X \to Y$ is f.a.c., then f is f.a.D.c.. PROOF Since a fuzzy regular open F_{σ} -set is a fuzzy regular open set, the proof is clear. DEFINITION 25. A function $f: X \to Y$ is said to be fuzzy weakly D-continuous (f.w.D.c.) at x_{α} if for each fuzzy open set F_{σ} -set β with $f(x) \in \beta$, there exists a fuzzy open set μ with $x_{\alpha} \in \mu$ such that $f(\mu) \leq \overline{\beta}$. The function which is a f.w.D.c. in each point is called f.w.D.c.. THEOREM 14 If $f: X \to Y$ is f.D.c., then f is f.w.D.c.. PROOF For a fuzzy set β , since $\beta \leq \overline{\beta}$, the proof is clear. COROLLAY 2 If $f: X \to Y$ is f.c., then f is f.w.D.c.. PROOF f is f.c. $\Rightarrow f$ is f.D.c. $\Rightarrow f$ is f.w.D.c.. COROLLAY 3 If $f: X \to Y$ is f.a.D.c., then fis f.w.D.c.. PROOF For a fuzzy set β , since $\frac{\circ}{\beta} \leq \overline{\beta}$, the proof is clear. COROLLAY 4 If $f: X \to Y$ is f.a.c., then f is f.w.D.c.. PROOF f is f.a.c. $\Rightarrow f$ is f.a.D.c. $\Rightarrow f$ is f.w.D.c.. # 3. Fuzzy D-regular space and fuzzy D-hausdorff space DEFINITION 26 Two fuzzy sets β_1 and β_2 in a f.t.s. (X, τ) are said to be Q-seperated iff there exist fuzzy closed sets μ_i (i = 1, 2) such that $\mu_i \geq \beta_i$ (i = 1, 2) and $\beta_2 \Lambda \mu_1 = \beta_1 \Lambda \mu_2 = 0$. It is obvious that β_1 and β_2 are Q-seperated iff $\beta_2 \Lambda \beta_1 = \beta_1 \Lambda \beta_2 = 0$ ([7]). DEFINITION 27 A fuzzy set β in a f.t.s. (X,τ) is called fuzzy disconnected if there exist two nonzero fuzzy sets A and B in supspace $D_o(i.e; supp\beta = D_o)$ such that A and B are Q-seperated and $\beta = A \vee B$. A fuzzy set is called fuzzy connected if it is not disconnected ([7]). THEOREM 15 Two fuzzy sets α and β are Q-separated if $A_o \Lambda B_o = \emptyset$, $\overline{\alpha}_{A_o \vee B_o} = \overline{\alpha}_{A_o}$, $\overline{\beta}_{A_o \vee B_o} = \overline{\beta}_{B_o}$ ([7]). Proposition 3 Two fuzzy sets α and β are Q-separated if $\overline{\alpha}_{A_o \vee B_o}$ and $\overline{\beta}_{A_o \vee B_o}$ are Q-separated ([7]). THEOREM 16. A f.D.c. image of a fuzzy connected space is fuzzy connected. PROOF Let $f: X \to Y$ be a f.D.c. surjection from a fuzzy connected space X onto a fuzzy topological space Y. Suppose Y is not fuzzy connected. Then, from the Definition 25, there are nonzero fuzzy sets α and β such that α and β are Q—separated and $Y = \alpha \vee \beta$. By the Proposition 3, $\overline{\alpha}$ and $\overline{\beta}$ are Q—separated. Thus $Y = \overline{\alpha} \vee \overline{\beta}$ and $\overline{\alpha} \vee \overline{\beta} = 0$. Hence both $\overline{\alpha}$ and $\overline{\beta}$ are fuzzy clopen sets in Y. This means they are fuzzy closed G_{δ} -sets in Y. Since f is f.D.c., by the Theorem 2, both $f^{-1}(\overline{\alpha})$ and $f^{-1}(\overline{\beta})$ are fuzzy closed sets in X. Then $1 = f^{-1}(\overline{\alpha}) \vee f^{-1}(\overline{\beta})$ and $f^{-1}(\overline{\alpha}) \wedge f^{-1}(\overline{\beta}) = 0$. Thus $f^{-1}(\overline{\alpha})$ and $f^{-1}(\overline{\beta})$ are Q—separated and (X, τ) is a fuzzy disconnected space. This is a contradiction to the hypothesis. DEFINITION 28 A function $f: X \to Y$ is said to be fuzzy connected if $f(\alpha)$ is fuzzy connected for every fuzzy connected set α in X. COROLLAY 5 Every f.D.c. function is a fuzzy connected function. PROOF This follows from the Theorem 4 and the Theorem 1. DEFINITION 29 A f t.s. (X,τ) is called fuzzy T_1 if for each $x \in X$ and each $\lambda \in [0,1]$, there exists $\beta \in \tau$ such that $\beta(x) = 1 - \lambda$ and $\beta(y) = 1$ for $y \neq x$ ([7]) PROPOSITION 4. A f.t.s (X,τ) is fuzzy T_1 if each fuzzy point in X is a fuzzy closed set in X ([9]). **DEFINITION 30.** A f.t.s. (X, τ) is called fuzzy T_2 (fuzzy Hausdoff) if for any two fuzzy points e and d satisfying suppe \neq suppd there exist Q-neighborhoods β and α of e and d, respectively, such that $\beta \wedge \alpha = 0$ ([7]). THEOREM 17. Let $f: X \to Y$ be a one-to-one and f.D.c. function such that each singleton in Y is a fuzzy G_{δ} -set. If Y is fuzzy T_1 , then so X. PROOF. Since f is f.D.c. and injective for a fuzzy point x_{α} in X, $f(x_{\alpha})$ is a fuzzy point in Y and since Y is fuzzy T_1 and $\{f(x_{\alpha})\}$ is a fuzzy G_{δ} -set in Y, then $\{x_{\alpha}\}$ is fuzzy closed in X. So X is a fuzzy T_1 space. THEOREM 18. Let $f: X \to Y$ be a f.D c. and fuzzy closed function from a fuzzy normal space X onto a fuzzy topological space Y such that each singleton in Y is a fuzzy G_{δ} -set. If either of the spaces X and Y is fuzzy T_1 , then Y is fuzzy Hausdorff. **PROOF.** Case 1. I. The space Y is fuzzy T_1 . Let e and d two fuzzy points in Y satisfying $suppe \neq suppd$. Then $\{e\}$ and $\{d\}$ are fuzzy closed G_{δ} -sets in Y and so, by the Theorem 2, $f^{-1}(e)$ and $f^{-1}(d)$ are fuzzy closed sets in X. By the fuzzy normality of X, there are disjoint fuzzy open sets μ_1 and μ_2 such that $f^{-1}(e) \in \mu_1$ and $f^{-1}(d) \in \mu_2$ and $\mu_1 \wedge \mu_2 = 0$. Since f is fuzzy closed, the sets $\beta_1 = 1 - f(1 - \mu_1)$ and $\beta_2 = 1 - f(1 - \mu_2)$ are fuzzy open in Y. Also $e \in \beta_1$ and $e \in \beta_2$ and \in$ Case 2. II. The space X is fuzzy T_1 . Let x_{α} be a fuzzy point in X. Since the singleton $\{x_{\alpha}\}$ is fuzzy closed, $\{f(x_{\alpha})\}$ is a fuzzy closed set in Y. So Y is fuzzy T_1 and the proof is complete in view of case 1. DEFINITION 31. We call a space fuzzy D-Hausdorff if each pair of distinct fuzzy points is quasi-coincident with disjoint fuzzy open F_{σ} -sets. THEOREM 19 Let $f: X \to Y$ be a f.D c. injection into a fuzzy D-Hausdorff space Y. Then X is fuzzy Hausdorff PROOF Let x_{α} and y_{λ} be two fuzzy points satisfying $supp x_{\alpha} \neq supp y_{\lambda}$. Then $f(x) \neq f(y)$. Since Y is fuzzy D-Hausdorff, there are disjoint fuzzy open F_{σ} -sets β_1 and β_2 with $\beta_1 \in f(x_{\alpha})$ and $\beta_2 \in f(y_{\lambda})$, respectively. By the Theorem 2, $f^{-1}(\beta_1)$ and $f^{-1}(\beta_2)$ are disjoint fuzzy open sets with $x_{\alpha} \in f^{-1}(\beta_1)$ and $y_{\lambda} \in f^{-1}(\beta_2)$, respectively. Thus X is fuzzy Hausdorff. Let (X,τ) be a f.t.s. and let Ψ denote the collection of all fuzzy open F_{σ} -sets in (X,τ) . Since the intersection of two fuzzy open F_{σ} -sets is a fuzzy open F_{σ} -set, the collection Ψ is a base for a fuzzy topology τ^* on X. Clearly $\tau^* \subset \tau$. Moreover, if each singleton in X is a fuzzy G_{δ} -set, then (X,τ^*) is fuzzy T_1 whenever (X,τ) is. DEFINITION 32 A f.t.s (X,τ) is called fuzzy *D*-regularif for each fuzzy point x_{α} in X and each fuzzy open set μ with $x_{\alpha} \in \mu$, there is a fuzzy open F_{σ} -set μ^* such that $x_{\alpha} \in \mu^*$ and $\mu^* \leq \mu$. COROLLAY 6 A f.t.s. (X,τ) is fuzzy D-regular if and only if $\tau=\tau^*$. PROOF (\Rightarrow) : Let (X,τ) be a fuzzy D-regular space and let $\beta \in \tau$. If $\beta \notin \tau^*$, there is a fuzzy point x_{α} in X such that for every fuzzy open F_{σ} -set μ^* in X with $x_{\alpha} \in \mu^*$, $\mu^* \leq \beta$. But, since X is fuzzy D-regular, this is contradiction. Thus $\beta \in \tau^*$ and $\tau = \tau^*$. (\Leftarrow) : Let $\tau = \tau^*$ and let x_{α} be a fuzzy point in X. Suppose μ be a fuzzy open set in X with $x_{\alpha} \in \mu$. Since $\tau = \tau^*$, $\mu \in \tau^*$, $x_{\alpha} \in \mu$ and $\mu \leq \mu$. Thus X is a fuzzy D-regular space. THEOREM 20 Let (Y, τ') be a f.t.s.. Then following statements are equivalent: - (a) (Y, τ') is fuzzy D-regular; - (b) Every f.D.c. function from a f.t.s. (X,τ) into Y is f.c.; - (c) The identity mapping I from (Y, τ'^*) onto (Y, τ') is f.c.. PROOF (a) \Rightarrow (b): Let $f(x_{\alpha}) \in \beta$ and β be a fuzzy open set in Y. Since (Y, τ') is fuzzy D-regular, there is a fuzzy open F_{σ} -set β^* such that $x_{\alpha} \in \beta^*$ and $\beta^* \leq \beta$. By the Theorem 2, $f^{-1}(\beta^*)$ is fuzzy open and x_{α} inf⁻¹(β^*) and $f(f^{-1}(\beta^*)) \leq \beta$. Thus f is f.c.. (b) \Rightarrow (c): Let f = I, $I : (Y, {\tau'}^*) \to (Y, {\tau'})$ be the identity mapping. Let $f(x_{\alpha}) \in \beta$ and β be a fuzzy open F_{σ} -set in $(Y, {\tau'})$. Then x_{α} inf⁻¹(β) and $f^{-1}(\beta) \in {\tau'}^*$. So $f(f^{-1}(\beta)) \leq \beta$. Thus f is f.D.c.. From (b), f is f.c.. (c) \Rightarrow (a): Let x_{α} be a fuzzy point and β be a fuzzy open set in (Y, τ') with $x_{\alpha} \in \beta$. Since $f = I : (Y, {\tau'}^*) \to (Y, \tau')$ is f.c., there is a fuzzy open F_{σ} -set μ in $(Y, {\tau'}^*)$ such that $x_{\alpha} \in \mu$ and $f(\mu) \leq \beta$. Thus $x_{\alpha} \in \mu \leq \beta$ and (Y, τ') is fuzzy D-regular. THEOREM 21 The product of any family $\{X_{\alpha} : \alpha \in D\}$ of fuzzy D-regular spaces is fuzzy D-regular. PROOF To show that $X = \prod X_{\alpha}$ is f.D-regular, in view of the Theorem 7, it is sufficient to show that every f.D.c. function $f: Y \to X$ is f.c.. Thus it suffices to show that P_{α} of is f.c. for each α , where P_{α} denotes the projection onto the α -co-ordinate space. Let σ be a fuzzy closed G_{σ} -set in X_i . Then $P_{\alpha}^{-1}(\sigma x \prod_{i \neq \alpha} 1\alpha)$ is a fuzzy closed G_{δ} -set in X. Since $(P_{\alpha} \circ f)^{-1}(\sigma) = f^{-1}(P_{\alpha}^{-1}(\sigma))$ is fuzzy closed in Y, $P_{\alpha} \circ f$ is f.D.c.. In view of fuzzy D-regularity of X_{α} (for each $\alpha \in D$), $P_{\alpha} \circ f$ is f.c. and the proof of the theorem is complete. #### References - C L. CHANG, Fuzzy Topological Spaces, J Math Anal. Appl 24 (1968), 182 -190 - [2] C.K. WONG, Covering Properties of Fuzzy Topological Spaces, Mathematical Analysis and applications 43 (1973), 697 704. - [3] N.C. HELDERMANN, Developability and some new regularity axioms, Canad. J. Math. (1981), 33 64 - [4] JK KOHLI, D-Continuous Functions, D-Regular Spaces and D-Hausdorff Spaces, Bull Cal Math Soc 84 (1992), 39 - 46. - [5] K.K. AZAD, On fuzzy Semi-continuity, fuzzy almost Continuity and fuzzy weakly continuity, J. Math Anal Appl. 82 (1981), 14 32. - [6] M.N. MUKHERJEE and S.P. SINHA, On some near-fuzzy continuous functions between fuzzy topological spaces, fuzzy sets and system 34 (1990), 243-254 - [7] P.P MING and L.Y MING, Fuzzy topology I-Neighborhood structure of a Fuzzy point and Moore-Smith Convergence, J. Math.Anal. Appl. 76, 571 599. - [8] P.P. MING and L.Y. MING, Fuzzy topology. II. Product and Quotient Spaces, J. Math. Anal Appl. 77 (1980), 20 - 37 - [9] S.P. SINHA, Seperation Axioms In Fuzzy Topological Spaces, Fuzzy Sets and Systems 45 (1992), 261 - 270 - [10] R.H. WARREN, Neighborhoods, Base And Continuity In Fuzzy Topological Spaces, Rock Mountain 8 (1978), 459 - 470 - [11] S W WILLARD, General Topology, Adison-Wesley Publishing Company (1970), 369 - [12] L A ZADEH, Fuzzy Sets, Inform and Control 8 (1965), 338 353 Department of Mathematics Faculty of Science Cumhuriyet University 58140 Sivas, Turkey E-mail. makdag@bim.cumhuriyet edu.tr