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FUZZY D-CONTINUOUS FUNCTIONS

METIN AKDAG

AustRACT In thas paper, fuzzy D-contmuous function is defined
Some basic properties of this continuity are sumnmarized, and suffi-
cient conditions on domain and /or ranges implying fuzzy D-continuity
of fuzzy D-continuous functions are given Also fuzzy D-regular space
15 defined and by using fuzzy D-continuity, the condition which is
equivalent to fuzzy D-regular space, is given

1. Introd:uction

The concept of fuzzy sets was introduced by Zadeh in his classicical
paper [12]|. Therefore many investigations have been carried out, in
the general theorical field and also in different application sides, based
on this concept. The idea of fuzzy topological spaces was introduced
by Chang [1]. The idea 1s more or less a generalization of ordinary
topological spaces. Different aspect of such spaces have been developed
by several investigatious.

In this paper, we first generalize the idea of continuity as a local
property in fuzzy setting. Then we generalize mainly the concept of
D-continunity of a function due to J. K. Kohli {4] in fuzzy setting. It
can be seen that fuzzy continuity implies fuzzy D-continuity. Also it
can be seen that weaker forms of fuzzy continuity implies weaker forms
of fuzzy D-continuty, but not conversely Finally, it can be seen that

Received September 4, 2000 Revised April 2, 2001
2000 Mathematics Subject Classification 54A40, 04A72

Key words and phrases fuzzy continmity, fuzzy D—continuity, fuzzy regular
space, fuzzy D-tregular space



2 METIN AKDAG

fuzzy continuity and fuzzy D-continuity are equivalent in case when
the range space of function is fuzzy D-regular space.

Helderman (3] introduced some new regularity axioms and studied
the class of D-regular spaces. Also the class of D-Hausdorff spaces, was
introduced by J. K. Kohli {4], was shown to constitute on appropriate
class of spaces in which D-continuous functions have strongly closed
graphs. Then it turns out that the class of D-regular spaces is precisely
the class of spaces in which the concepts of a continuous function and
D-continuous function coincide [4, Theorem 4.1.]. In this paper, the
class of fuzzy D-regular spaces is introduced and some properties are
studied in Section 3. Also it can be seen that the class of fuzzy D-
regular spaces is precisely the class spaces in which the concepts of

a fuzzy continuous function and fuzzy D-continuous function coincide
[see Theorem 25]

Preliminaries

DEFINITION 1 Let X be a nonempty set. Then a fuzzy set in X is
an element in {0, 1]%, i.e. a function from X mto (0 1] ([1])

DEFINITION 2 Let a and 8 be two fuzzy sets in X. Then we have
the following properties for fuzzy sets o and 3 :

a<fBealz)<pz) forall z€ X,

a=p8e az)=pz) foral z€X,

p=aV e ux) =max{a(z), 3(z)} foral ze X,

§ =aAp e §(x) = min{a(z), A(z)} forall ze X,
a=p ooalz)=1—8(x) forall ze X.

More generally, for a family of fuzzy sets p = {u, | i € I}, the in-
tersection 8 = Ag, and the union o = Vy;, are defined as afz) =
Sup{p,{z) 1z € X} and B(z) = Inf{u:(z) :z € X}, forz € X ([1]).
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DEFINITION 3 A fuzzy set in X is called a fuzzy pownt if 1t takes
the value 0 for all ¥y € X except one, say, z € X If it’s value at = is
a(0 < @ < 1), we denote this fuzzy point by x, where the point z is
called its support. We can write the fuzzy point z,, with

a ; f y=u
‘”"(y)—{o iyt

and we can denote the support of & with supp zo = = ([7]).

DEFINITION 4 A fuzzy topology is a family 7 of fuzzy sets mn X
which satifises the following conditions:

(a) 0,1 €7

(b} If o, 3 € 7, then o AB € T

(c) If p, € 7, for cach i € I, then V,cy, u, €7,

T is called a fuzzy topology for X, and the pair (X, 7) is a fuzzy topo-
logrcal space (shortly ft.s.). Every member of 7 15 called a fuzzy open
set. A [uzzy set is called a fuzzy closed selff its complement is open

(7).

DEFINITION 5. Let (X,7) be a f..s. and a € I% The closure of «
is denoted @ and given by @ = A{F : 3 is a fuzzy closed set and a < F}.
The nterior of a is denoted by inta or & and given by a=v{3: 3 is
a fuzzy open set and 8 < a} ([5]).

DEFINITION 6 A fuzzy set « in a ft.s, (X,7) is called a neugh-
borhood of fuzzy point zp if there exists 3 € v such that x5 € 8 and
B < a. A neighborhood a of xy 15 said to be open if « is fuzzy open.
The family consisting of all the neighborhoods of 2 is called the system
of neighborhoods of za ([2]).

DEFINITION 7 A fuzzysetainaft s, (X, 7)1s called Q-nerghborhood
of zp if there exists 3 € 7 such that z5 € 8 and 3 < a. The family
consisting of all the Q-neighborhds of z5 is called the system of Q-
neighborhds of z5. For fuzzy sets here o and 3 ,a € J mean that
a(y) + B(y) > 1 for at least one point y n X ([2]).



4 METIN AKDAG

DEFINITION 8. Let X and Y be two f.t.s. and let f be a function
from X to Y. Also let 3 be a fuzzy set in Y. Then the tnverse of 3,
written as f~*(8), is a fuzzy set in X which is defined by f~1(8)(z) =
B(f(z)) for all z in X.

Conversely, let a be a fuzzy set in X. The image of a, written as
f(), is a fuzzy set in Y which is defined by

I sup {afx)}: if £~ (y) is nonempty
F)y) = { =€)

“*

0 : otherwise,

for all 4 in Y where f~y) = {z: f(z) = v} ([5])-

DEFRINITION 9. Let (X,7) and (Y, 7') be two f.t.s,f: X = Y be a
function and z, be a fuzzy point in X. For each Q-neighborhood u of
f(xa), if there is a Q-neighborhood & of 4, such that f{6) < u, then
it is called that f is fuzzy continuous at z, ([8]).

DEFINITION 10 Let § = {S,, : n € D} be a fuzzy net in X. §
is said to be quasi-comncident with « if for each n € D, §, is quasi-
coincident with a. Also § is said to be eventually quasi-comncident with
a if there is an element m of I such that, if » € D and n > m then
Sn is quasi-coincident with a ({7]).

DEFINITION 11 A net Sina ft.s., (X, ) is said to be converge to
a fuzzy point 2, in X relavite to 7 if S is eventually quasi-coincident
with each Q-neighborhood of z, ([7}).

DEFINITION 12. Let (X,7) be a ft.s. and u € IX. If 2 =u, then it

is called that p is a fuzzy regular open set (fr.o.) in X. If u = [ then
it is called that p is a fuzzy regular closed set (f.r.c.) ([5]).

DEPINITION 13 A f.t.s. X is called a fuzzy reqular space if for each
fuzzy point z, in X, and if for every fuzzy open set u properly z, € 4,
there exists a fuzzy open set 77 in X such that z, € nand n < <

([6]).
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DerINITION 14 A ft.s. X is called a fuzzy almost regular space
if for each fr.o. set g in X and for each fuzzy point z, properly z,
quast-coincident with g, there exists a fuzzy regular open set 3 in X
such that z, € B and 8 < 8 < u ([6)).

DEFINITION 15 A fit.s. X called a fuzey semu-regular space if for
each fuzzy open set p in X and for every fuzzy point z, € p, there

exists a fuzzy open set 3 in X such that ¢, € 8 and 3 < 3 < u ([6]).

It can be seen from above definitions that a fuzzy regular space is a
fuzzy scii-regular and a fuzzy almost regular space.

DEFINITION 16 A fuzzy almost regular space is a fuzzy sema-regular
space if and only if it is a fuzzy regular space ([6]).

DEPINITION 17 A function f: X — Y 1s said to be fuzzy continu-
ous (f ¢.) at z, 1f for each fuzzy open set 3 in Y with f(zs) € 3, there
is a fuzzy open set u with x, € z such thai f{g) < 5. The functien
which is fuzzy continuous at each point is called fuzzy continous ({5}).

DEFINITION 18 A function f : X — Y 1s said to be fuzzy al-
most conbinuous(f.a.c.) at z, if for each fuzzy open set 3 in Y with

f{za) € B, there is a fuzzy open set p with 24 € p such that f{u) < S.
The function which is fuzzy continuous at each point is called fuzzy
continrous ([5])

2. Fuzzy D-continuous funtions

DEFINITION 19 A fuzzy set in X isa fuzzy Gs-sefif it is a countable
intersection of fuzzy open sets

DERINITION 20 A fuzzy set in X isa fuzzy F, -setif it is a countable
union of fuzzy closed sets.

The coplement of a fuzzy Gs-set is a fuzzy F,-set and vice versa.

LEMMA 1 A fuzzy F,-set can be written as the union of an increas-
g sequence 0 < oy < -+ of fuzzy closed sets (Hence, a fuzzy Gs-sel

can be written as the intersection of a decreasing sequence of fuzzy open
sets. ).
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PROOF. It is clear from the definitions 17 and 18.

DEFINITION 21 A function f : X — Y is said to be fuzzy D-
continuous (£.D.c.} at z, if for each fuzzy open F,-set 8 in Y with
f(za) € B, there is a fuzzy open set u with z, € u such that f(u) < 3.
The function which is fuzzy D-continuous at each point is called fuzzy
D-contintous.

THEOREM 1. Let f: X — Y be a function. If [ s fuzzy conlinuous,
then f 1s f.D.c.

ProoF. Since each fuzzy open F,-set is fuzzy open, the proof is
clear.

EXAMPLE 1 Let X be a nonempty set and 7 = {0, 1,0} be a fuzey
topology on X with ofz) = k. Let v/ = {0,1,8, : n € N} where for
eachn € N and for allz € X, B.(z) = £ for all x € X. Then the
wdentrty mapping f : (X, 1) = (X,7') @ f.D.c. at @z, but not fe al

PROOF. For 3 € 7/ with f(za) € B3, 2z € o and fla) £ B3
so is not f.c. at z 2L But, if we obtain the family of nonempty fuzzy
open F,-sets ® in (X, 7'), then we arrive that ® = {1,3,}. Thus, for
flzg) e l,zy € land f(1) <1 and for f(zz) € B2, xz € @ and
Sfla) < Bsso fis £.D.c. at T2

THEOREM 2 Let f : X — Y be a function. Then the follourng
statements are equivalent :

(a) fasfD.c ;

(b) If B is a fuzzy open Fy-s¢t in Y, then f~1(3) 1s a fuzzy open
set m X ;

(c) If o a fuzzy closed Gs-set m Y, then f~{o) is a fuzzy closed
set in X.

ProoF (a) = (b): If B is a fuzzy open F,-set in Y, then for each
fuzzy point 24 in X with x4 € f~1(8), f(®a) € 8. From (a), there s
a fuzzy open set g in X with z, € p such that f(u) < 8. Thus z, € p
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and p < f~1(8) so f~1(B) is fuzzy of zo. Thus f71(8) is a fuzzy open
set In X.

(8) = (a) : Let B be a fuzzy open F,-set in Y with f(z,) € 8. From
(b), f~1(B) is a fuzzy open set in X with z, € f~1(B3). Thus f(u) <8
with f~1(8) = p.

(b) = {c) : Let o be a fuzzy closed Gs-set in Y, then 1 — o is a fuzzy
open Fg-set and so from (b), f~Y1 - o) = 1 — f~ (o) is fuzzy open.
Thus f~1(0) is fuzzy closed in X.

(¢) = (b) : Let B be a fuzzy open F,-set. Then 1 — 3 is a fuzzy closed
Gls-set and so 71 — B) = 1 — f~YA) is fuzzy closed. Thus f~{3)

1s a fuzzy open set in X.

PROPOSITION 1. Let f. X — Y be a function. If f1s f D.c., then
for each fuzzy pont x, in X and each fuzzy net {S, : n € D} which
converges to x,, the fuzzy net {f(S,) : n € D} 15 eventually quas:-
coincident with each fuzzy open I, -set 3 with f(xa) € 5.

PROOF. By the theorem 2., {is {.D.c. < 1if 3 is a fuzzy open F,-set
in Y, then f=1(8) is a fuzzy open set in X Now, let {S, : n € D}
be a fuzzy net in X which converges to z, and let 3 be a fuzzy open
Fo-set in Y with f(z,) € 3. Then f~1(3) is a fuzzy open set with
zo € f7HF). Thus {S, : n € D} is eventually quasi-coincident with
FYB). lHence {f(S,) : n € D} is eventually quasi-coincident with 5.

DEFINITION 22. Let f. X — Y be any function. Then the function

g: X — X XY, defined by g{z) = (z, f(x)), is called the graph function
with respect to f ({11]).

THEOREM 3. Lel f : X — Y be a function such that the graph
function g is fD.c.. Then f 1s f.D.c..

PROOF. Let x, be a fuzzy point in X and let 3 be a fuzzy open Fj,-
set with f{z,) € 3. Since 1 — 3 is a fuzzy closed Gs-set, 1 x (1 - 3) =
(1x 1) = Py (p) is a fuzzy closed Gs-set. Thus Py () is a fuzzy open
Fy-set of X x Y. Since g is £D.c., there is a fuzzy open set u with
T, € psuch that g{p) < Py H(B). Tt follows that Pa{g(p)) = f(u) and
f(p) < B and g(z,) € PQ_I(_,B), and so f is f.D.c..
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THEOREM 4 Let f: X - Y be any function and A be a subset of
X. If f is f.D.c., then the induced fla: A=Y is fD.c.

PrOOF Let z,’ be a fuzzy point in A with

« i y==x

"”"’(?")2{0 Cif yA

and 3 be any fuzzy open F,-set in Y with fia(z.') € 8.
If we define fuzzy point z, in X as

o ; fy==2

ma(y)={0 o if y # =,

then f(z,) € 3. Since f is £D c. from X to Y, there exists a fuzzy
open set it with £, € p such that f(u) < 8. Then pua = pg is fuzzy
open in A and fi4(s4) < 8 where p14: A — [0,1]. Thus fj4 is £.D.c..

THEOREM 5 If f: X =Y s fc andg:Y — Z is f.D.c., then
go f is f.D.c..

PROOF Let o be a fuzzy closed Gs-set in Z. Then g~ 1(o) is fuzzy
closed in Y and since f is fc., (go f)~ o) = f g7 o)) is fuzzy
closed in X. Thus go fis f.D.c..

THEOREM 6. Let f: X — Y be erther a fuzzy open or a fuzzy closed

surjection and let g 1 Y — Z be any function such that go f 15 f.D.c..
Then g is f.D.c..

PROOF Suppose f is fuzzy open (respectively, fuzzy closed), and
let 3 be a fuzzy open Fj,-set in Z (respectively, 3 be a fuzzy closed G,-
set). Since go f is £.D.c., (go f)~1(B) = f~ (g~ (B)) is fuzzy open (re-
spectively, fuzzy closed) and since f is a surjection, f(f (g7 *(3))) =
9~ 1(B) is fuzzy open (respectively, fuzzy closed) and consequently g is
fD.c.
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DerINITION 23 Let (X,7) be a fuzzy topological space. Let R
be equivalence relation on X. Let X/R be the quotient sct, and let
P : X — X/R be the projection {quotietent map). Let v be the family
of fuzzy sets in X, defined by v = {8 | P~*(8) € 7}. Then v 1s,
obviously a fuzzy topology, called the quotient fuzzy topology for X/R
and (X/R,v) is called the quotient fuzzy space of {X, ) (relative to the
quotient map). Here P is fc. ([8]).

THEOREM 7 Let f: X — Y be a quotient map. Then a function
9:Y s Z s fDe ifand onlyof go f s fDoc.

PROOF (=) : It is immediate from the Theorem 6.

(<) : Let 3 be a fuzzy open F,-set in Z. Then (go f)"'(3) =
g~ }(B)) is fuzzy open in X. Since f is a quotient map, g~*(f) is
fuzzy open in Y and so g is f.D.c..

TueenreM & Forcach o€ 1, let fo: Xo = Yo be a funchion, and
let f: 1] Xa = Ya be a function defined by fl(za)] = (fal(za)) for
cach fuzzy pownt (x4) w [| Xo. If f is fD.c., then each fo s f.D c..

PROOF Tet ag € I, and let o,, be a fuzzy closed (g-set in Yy,
Then 04y X [[ara, Lo 18 & fuzzy closed Gs-set in []Y, where ag € I.
Since f is £.D ¢ by the Theorem 2, f~(oq, x ([T1a)) = oo, ) ¥
(IT1a) is fuzzy closed in {] X, where a # ag. Consequently, f5 ! (0a,)
is fuzzy closed in X,, and so f,, is {.D.c..

THEOREM 9. Let f: X = [[ Xa be a function into a fuzzy product
space. If f s f D.c., then for each Py : [ Xa — Xa, Pao f s f.D.c..
PROOF Let 0,, be a fuzzy closed Gs-set in X,,.
Then (Puag © f) " (0ap) = f7H P H0a0)) = [TH(0ae® [ 1a). Since f
18 £.D.c. and since 04, X [ 14 15 a fuzzy closed Gs-set, then [~ (g4, X
[11a) is fuzzy closed in X. By the Theorem 2, P,, o f is £D.c..

DEFINITION 24 A function f : X — Y is said to be fuzzy almost
D-containuous (f.a.D.c.) at x4 if for each fuzzy open F,-set § with
f(zq) € B, there exists a fuzzy open set p, with z, € pu such that

o

flp) < 3. A function which is a f.a D.c. at each point is called f.a.D.c.
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THEOREM 10. Let f: X — Y be a function. If f is f.D.c., then f
is f.a.D.c..

o

PROOF. Since for each fuzzy open set 3, 8 < 3, the proof is clear.

THEOREM 11. Let f : X — Y be a function. Then the follouing
statements are equavelent :

(a) fisfaD.c ;

{(b) For each fuzzy regular open F,-set 3 Y, f~1(3) 1s fuzzy open
in X ;

(c) For each fuzzy regular closed Gy-set B in'Y, f~1(B) s fuzzy
closed m X ;

(d) For each fuzzy reqular open F,-set 3 'Y and for each xo with
flxzo) € B, there 1s a fuzzy open set p with x, € p such that

fu)<B; .
(e) For every fuzzy open Fy-set B m Y, f~1B) < [f~(B)] ;

(f) For every fuzzy closed Gs-set 3 m Y, [f‘l(zi')l < fF7HB).

PROOF. (a} = (b): Let be 3 a fuzzy regular open F,-set in Y, then
for each fuzzy point z, in X with x4 inf7*(8), we have f(z,) € S.

From (a), there is a fuzzy open set g with o € g such that f(u) < 3.
o]

Since 8 = B, f(1) < B. Thus z € p and p < f~2(B). So f~1(B) s
Q-neighborhood of z, and f~1(f) is fuzzy open in X.

(b) = (¢): Let 8 be a fuzzy regular closed Gs-set in Y, then 1 — B is a
fuzzy regular open F,-set in Y. So f~1(1 — 8) = L — f~1j) is fuzzy
open in X. Thus, from (b), f~1(3) is fuzzy closed in X.

(¢) = (d): Let B be a fuzzy regular open F,-set in Y with f(z,) € 8.
From (c¢), 1 — 3 is a fuzzy regular closed Gs-set in Y and f~1(1-3) =
1 — f~1(3) is fuzzy closed in X. Thus f~1(;3) is fuzzy open in X and
Zoinf~H(B). Let p= f7(B), then f(u) < B.

(d) = (b): Let 83 be a fuzzy regular open F,-set in Y and z, € f~1(3).
Then, f(z,) € 8 and from (d), there is a fuzzy open set p such that
Zo € pand f(p) < B. Thus 24 € pand p < f7HAB). So f7HB) isa
fuzzy open set in X.
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(d) = (€): Let 3 be a fuzzy open F,-set in Y. Then § 1s a fuzzy regular
open F,-set and f~Y(8) < f~YB). From [(d) = (b)], f~(B) is fuzzy

open. Thus f~1{3) < [f~HB)].
(e} = (f): Let 3 be a fuzzy closed Gs-sct in Y. Then 1 — 8 is a fuzzy

open Fa-s_ft inY. From (f)’ f~H1-p) il—f_l(ﬁ) <1 1-8=

L= f1B)] = (1 — f-1(B)] Thus, f~(3) < f(B).
(f) = (a): Let B be a fuzzy open F,-sct in Y with f(z«) € 8. Then

1— {2§_fuz_z}_/_closed Gs-set in Y. From (f), [f Hi- ;3)] <1-f~4H3)

= If A=Al < 1- B = 1 f- ‘(B’) <1- [P = 1
I~ (ﬁ) <1- l([z) = 1B <|f 1(,6‘)] Let o= [f ‘1(()‘ )], then
ZTo € pand f(u) < B. Thus f1s faD.c. at z,.

PROPOSITION 2 Let f: X — Y be a functwon. If f 25 fa.D.c.,
then for each fuzzy point xo 1n X and for each fuzzy net S = {Sn :
n € D} which converges to x4, the fuzzy net f(S) = {f(S.) :n € D}
15 eventually quasi-comncident with each fuzzy regular open F, — set, 3

with f(za) € 8.

ProoF TLet § ={S, :n € D} be a fuzzy net in X which converges
to Zo and let 3 be a fuzzy regular open F,-set in Y with f(x,) € 5.
Then, from the Theorem 11, f~1(3) is a fuzzy open set in X with
Zo inf TH{B). Thus, since S is eventually quasi-coincident with f~1(4),
f(8) ={f(S,) : » € D} is eventually quasi-coincident with 3.

THEOREM 12 Let f: X > Y bea f.c mapping. If g: Y — Z 15
fa.D.c., thengo f s f.aD.c..

PROOF Let 3 be a fuzzy regular closed Gs-set in Z. Then, by the
Theorem 11, g7'(3) is fuzzy closed in Y. Since fis f.c., f~{g7}{(B)) =
(g o f)7}(B) is fuzzy closed in X. Thus, go f 1s fa.D.c.
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CoROLLAY 1 If f: X =Y 18 f.c., then f 18 f.a.D.c..

PROOF. The proof is clear from the definitions.

THEOREM 13. If f: X =Y 1s fa.c., then f 1s f.a.D.c..

PROOF Since a fuzzy regular open F,-set is a fuzzy regular open

set, the proof is clear.

DEFINITION 25. A function f: X — Y is said to be fuzzy weakly

D-continuous (fw.D.c.) at z, if for each fuzzy open set Fy-set § with
f(z) € B, there exists a fuzzy open set p with x4 € p such that
f(p) < B. The function which is a fw.D.c. in each point is called
fw.D.c..

THEOREM 14 If f: X =Y is f.D.c., then f s fw.D.c..

PROOF For a fuzzy set 3, since 3 < 3, the proof is clear.

COROLLAY 2 If f: X — Y s f.c., then f is fw.D.c..

Proor fisfc. = fisfD.c. = fisfw.D.c..
COROLLAY 3 If f: X =Y s f.a.D.c., then fis fw.D.c..
PROOF For a fuzzy set 3, since 8 < 3, the proof is clear.

COROLLAY 4 If f: X =Y is fa.c., then f is fw.D.c..

PrROOF fisfac. = fisfa.Dec. = fisfw.D.c.

3. Fuzzy D-regular space
and fuzzy D-hausdorif space

DEPINITION 26 Two fuzzy sets 8; and 3, in a f.t.s. (X, 7) are said

to be Q—seperated iff there exist fuzzy closed sets pu; (i = 1,2) such
that p, > 8, (i = 1,2) and BaAp; = B1Aus = 0. It is obvious that 8;
and 3, are QQ—seperated iff 5,A8, = B1AB> =0 {[7]).
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DEFINITION 27 A fuzzy set B in a f.t.s.(X,7) is called fuzzy dis-
connected if there exist two nonzero fuzzy sets A and B in supspace
D,(i.e; supp3 = D,) such that A and B are QQ—seperated and 3 =
AV B. A fuzzy set is called fuzzy connected if it is not disconnected

(7D

THEOREM 15 Two fuzzy sets a and 3 are Q—seperated if A AB,
= 0’ aAoVBo :aAn’ ﬁAoVBo :ﬂBo ([7]).

PROPOSITION 3 Two fuzzy sets o and 3 are Q-seperated of Ga,vB,
and B4 p, are Q-seperated ([7]).

THEOREM 16. A f.D.c. image of a fuzzy connecled space 1s fuzzy
connected.

PROOF Let f: X — Y bea fD.c. surjection from a fuzzy con-
nected space X onto a fuzzy tonolagical space Y. Suppose Y is_not
fuzzy connected Then, from the Definition 25, there are nonzero fuzzy
sets a and 3 such thal a and 3 are Q—seperated and Y = a Vv 3. By
the Proposition 3, & and S are @@ —seperated. Thus Y = a Vv B and
@V 3 = 0. Hence both @ and J are fuzzy clopen sets in Y. This means
they are fuzzy closed Gg-sets in Y. Since f is f.D.c., by the The-
orem 2, both f~'(@) and f~(3) are fuzzy closed sets in X. Then
1= f~Y@)Vv s/ 1(B) and f~H@Af"1(B) = 0. Thus f~*(@) and f~}(3)
are Q—seperated and (X, 7) is a fuzzy disconnected space. This is a
contradiction to the hypothesis.

DEFINITION 28 A function f : X — Y is said to be fuzzy connected
if f(e) is fuzzy connected for every fuzzy connected set o in X.
COROLLAY 5 FEuvery f.D.c. function 1s a fuzzy connected function.
Proor This follows from the Theorem 4 and the Theorem 1.
DEFINITION 29 A ft.s. (X, 7) is called fuzzy T} if for each z € X

and each A € [0,1], there exists A € 7 such that B(z) = 1 — X and
Bly) =1 for y £z ([7])
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PROPOSITION 4. A ft.s (X,7) is fuzzy T1 of each fuzzy powmnt in X
5 a fuzzy closed set wn X (/9]).

DEFINITION 30. A ft.s. (X, 7) is called fuzzy T» ( fuzzy Hausdoff)
if for any two fuzzy points e and d satisfying suppe # suppd there exist
QQ—neighborhoods 3 and « of € and d, respectively, such that FAa = 0

(7).

‘THEOREM 17. Let f: X — Y be a one-to-one and f.D.c. function
such that each singleton 'Y 15 a fuzzy Gg-set. If Y is fuzzy Ty, then

sc X.

PROOF. Since f is £.D.c. and injective for a fuzzy point z, in X,
f(za) is a fuzzy point in Y and since Y is fuzzy Ty and {f(z.)} is a
fuzzy Gg-set in Y, then {z,} is fuzzy closed in X. So X is a fuzzy T}
space.

THEOREM 18. Let f: X Y be a f.D c. and fuzzy closed function
from a fuzzy normal space X onto a fuzzy topologecal space Y such that
each singleton 'Y is a fuzzy Gs-set. If either of the spaces X andY
15 fuzzy 1, then Y is fuzzy Hausdorff.

Proor. Case 1. I. The space Y is fuzzy 7. Let e and d two fuzzy
points in Y satisfying suppe # suppd. Then {e} and {d} are fuzzy
closed Gs-sets in Y and so, by the Theorem 2, f~!(e) and f~1(d) are
fuzzy closed sets in X. By the fuzzy normality of X, there are disjoint
fuzzy open sets 1 and py such that f~l(e) € py and f~1(d) € po
and py A pp = 0. Since f is fuzzy closed, the sets 8; = 1 — f(1 — p1)
and 8y = 1 — f(1 — ps) are fuzzy openin Y. Alsoe € 8, and d € 5,
and 51 A B2 = 0, since f(p1) < By and f(p2) < Ba2. Thus Y is fuzzy
Hausdorff.

Case 2. II. The space X is fuzzy T}1. Let 2, be a fuzzy point in X.
Since the singleton {x,} is fuzzy closed, {f(z4)} is a fuzzy closed set
mm Y. SoY is fuzzy T} and the proof is complete in view of case 1.

DEFINITION 31. We call a space fuzzy D-Hausdorff if each pair of
distinct fuzzy points is quasi-coincident with disjoint fuzzy open Fy-
sets.
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THEOREM 19 Let f: X =Y be a f.D c. ingection wnto a fuzzy D-
Hausdorff space Y. Then X 1s fuzzy Hausdorff

ProoF Let x4 and y, be two fuzzy points satisfying suppze #
suppyxr. Then f(z) # f(y). Since Y is fuzzy D-Hausdorff, there are
disjoint fuzzy open F,-sets 8; and 3, with 3 € f(zo) and 32 € f(yr),
respectively. By the Theorem 2, f~1(3,) and f~!(3;) are disjoint fuzzy

open sets with z, € f7'(3,) and y» € f~*(B:), respectively. Thus X
is fuzzy Hausdorft.

Let (X,7) be a ft.s. and let ¥ denote the collection of all fuzzy
open Fg-sets in (X, 7). Since the intersection of two fuzzy open F,-sets
is a fuzzy open F,-set, the collection ¥ is a base for a fuzzy topology
7 on X. Clearly 7* C 7. Moreover, if each singleton in X is a fuzzy
Gs-set, then (X,7*) is fuzzy 1} whenever (X, 1) is.

DEFINITION 32 A fits (X, 7) is called fuzzy D-regularif for each
fuzzy point z, in X and each fuzzy open set u with z, € p, there is a
fuzzy open Fy-set u* such that z, € p* and p* < p.

COROLLAY 6 A fit.s. {X,7) 18 fuzzy D-regular of and only if 7 =
T*.

PROOF (=>): Let (X, 7) be a fuzzy D-regular space and let 3 € 7.
If 8 ¢ T*, there is a fuzzy point 24 mm X such that for every fuzzy open
Fy-set p* in X with z, € p*, p* < 8. But, since X is fuzzy D-regular,
this is contradiction. Thus g8 € 7* and 7 = 7*.
(«=) : Let 7 = 7* and let z, be a fuzzy point in X. Suppose g be a
fuzzy open set in X with z, € p. Since 7 = 7%, p € 7*, Zo € p and
< p. Thus X is a fuzzy D-regular space.

THEOREM 20 Let (Y,7') be a f.t.s.. Then follouing statements are
equivalent :

(a) (Y,7') is fuzzy D-requiar ;
(b) Euvery f.D.c. function from a f.t.5. {X,7) mto Y 1s fc. ;
(c) The dentitay mapping I from (Y, 7'") onto (Y, 7') is f.c..



16 METIN AKDAG

PROOF (a)=(b) : Let f(z,) € §# and 3 be a fuzzy open set in Y.
Since (Y, 7’) is fuzzy D-regular, there is a fuzzy open F,-set 8* such
that z, € 3* and 8* < 8. By the Theorem 2, f~}(8*) is fuzzy open
and zo inf (%) and f(f~1(8*)) < B. Thus f is f.c..

(b)=>{(c): Let f =1I,I:(Y,7"") - (Y,7') be the identity mapping. Let
f(za) € B and 8 be a fuzzy open F,-set in (Y,7'). Then z, inf ™ (3)
and f~1(B) € 7'". So f{f~1(B)) < B. Thus f is £D.c.. From (b), f is
fe.

{c)=(a) : Let z, be a fuzzy point and 8 be a fuzzy open set in (Y, 7')
with, € 8. Since f =1 : (¥,7") = (Y, 7') is f.c., there is a fuzzy open
Fy-set pin (Y,7'") such that 2, € g and f{u) < 3. Thus z, € p < 3
and (Y, 7') is fuzzy D-regular.

THEOREM 21  The product of any farmly {Xa : o € D} of fuzzy
D -regular spaces 1s fuzzy D-regular.

PrROOF To show that X = [] X, is f.D-regular, in view of the
Theorem 7, it is sufficient to show that every {.D.c. function f: ¥V — X
1s f.c.. Thus 1t suffices to show that P, of is f.c. for each a, where P,
denotes the projection onto the a-co-ordinate space. Let o be a fuzzy
closed G,—set in X;. Then P; oz [Tiza L) is a fuzzy closed Gs-set
in X. Since (P, o f)~!(o) = f~YP7(0)) is fuzzy closed in Y, Pyo f
is £.D.c.. In view of fuzzy D-regularity of X, (for each a € D), Pyo f
is f.c. and the proof of the theorem is complete.

REFERENCES

(1] CL. CHANG, Fuzzy Topological Spaces, I Math Anal.Appl 24 (1968), 182 -
190

2] CK WONG, Covering Properties of Fuzzy Topological Spaces, Mathematical
Analysis and applications 48 (1973), 697 - 704.

{3] N C HELDERMANN, Developability and some new regularity azioms, Canad
J Math (1981), 33 - 64

4] JK KOHLI, D-Continuous Functions, D-Regulor Spaces and D-Hausdorff
Spaces, Bull Cal Math Soc 84 (1992), 39 - 46.

(5] KK AZAD, On fuzzy Semu-continuity, fuzzy almost Continuity and fuzzy
weakly confinuity, J. Math Anal Appl. 82 (1981), 14 - 32.



FUZZY D-CONTINUOUS FUNCTIONS 17

[6if MN MUKHERJEE and S P. SINHA, On some near-fuzzy continuous func-

tions between fuzzy topological spaces, fuzzy sets and system 34 (1990), 243 -
254

{71 P.P MING and L.Y MING, Puzzy topology I-Newghborhood structure of ¢ Fuzzy
powmnt and Moore-Smath Convergence, J Math.Anal Appl 76, 571 - 5899.

(8] PP MING and LY MING, Puzy topology. II. Product and Quotient Spaces,
J. Math.Anal Appl 77 (1980), 20 - 37

{9) S P SINHA, Seperation Amoms In Puzzy Topological Spaces, Fuzzy Sets and
Systems 45 (1992), 261 - 270

(10} R.H WARREN, Neighborhoods, Base And Continuity In Fuzzy Topological
Spaces, Rock Mountain 8 (1978). 459 - 470

[11] 8 W WILLARD, General Topology, Adison-Wesley Publishing Company {1970),
369

{12 L A ZADEH, Fuzzy Sets, Inform and Control 8 (1965), 338 - 353

Department of Mathematics

Faculty of Science

Cumbhuriyet University

58140 Sivas, Turkey

E-mail. makdag@bim.cumhuriyet edu.tr



