East Asian Math J 17(2001), No 2, pp. 319-323

SOME GEOMETRIC PROPERTIES AND EXHAUSTION OF JOHN DISK

. KIWON KIM

1. Introduction

Suppose that D is a domain in the complex plane \mathbb{C} . Let $D^* = \mathbb{C} \setminus \overline{D}$ be the exterior of D in \mathbb{C} and let $B(z,r) = \{\zeta : |\zeta - z| < r\}$ for $z \in \mathbb{C}$ and r > 0.

A simply connected bounded domain $D \subset \mathbb{C}$ is said to be a *c-John* disk if there exist a point $z_0 \in D$ and a constant $c \geq 1$ such that each point $z_1 \in D$ can be joined to z_0 by an arc γ in D satisfying

$$\ell(\gamma(z_1, z)) \leq c \operatorname{dist}(z, \partial D)$$

for each $z \in \gamma$, where $\ell(\gamma(z_1, z))$ is the euclidean length of the subarc of γ with endpoints z_1 , z. We call z_0 a John center, c a John constant and γ a c-John arc. We say that D is John if it is c-John disk for some c. A bounded domain $D \subset \mathbb{C}$ is John if and only if each pair of points $z_1, z_2 \in D$ can be joined by an arc γ which satisfies

$$\min_{j=1,2} \ell(\gamma(z_j, z)) \le c \operatorname{dist}(z, \partial D)$$
(1.1)

for all $z \in \gamma$. We call γ a *double c-cone arc*. This definition can be used to define the unbounded John disks $D \subset \mathbb{C}$ as well [NV, 2.26].

In section 2, we present two sets of conditions which describe John disks D in terms of their geometry and in terms of the function f which maps the unit disk \mathbb{B} conformally onto D, [GHM], [NV], [P]. From the

Received March 8, 2001 Revised October 10, 2001.

KIWON KIM

first set we obtain a characterization for John disks which is a Jordan domain in $\overline{\mathbb{C}}$. From the second set we obtain a fact that a simply connected bounded John disk can be exhausted by Jordan domains

$$D_j = f(\mathbb{B}(0, r_j)), \qquad 0 < r_j < 1$$

which are also c-John disks. Thus for the simplicity we restrict our attention to the case where D is a Jordan domain in \mathbb{C} . However the results in this paper also hold for bounded simply connected domains in \mathbb{C} .

2. Exterior c-LLC and exhaustion of John disk

The first set of geometric conditions for John disk which is a Jordan domain in $\overline{\mathbb{C}}$ are as follows [GHM] and [NV]:

PROPOSITION 2.1. If D is a Jordan domain in $\overline{\mathbb{C}}$, then the following conditions are equivalent, where the constants in each condition need not be the same:

- (1) D is a c-John disk.
- (2) For every $z \in \mathbb{C}$ and r > 0, any two points in $D \setminus \overline{\mathbb{B}}(z,r)$ can be joined by a continuum in $D \setminus \overline{\mathbb{B}}(z, \frac{r}{c})$, i.e., D is $c LLC_2$.
- (3) For every $z \in \mathbb{C}$ and r > 0, any two points in $\{\overline{\mathbb{C}} \setminus D\} \cap \overline{\mathbb{B}}(z,r)$ can be joined by a continuum in $\{\overline{\mathbb{C}} \setminus D\} \cap \overline{\mathbb{B}}(z,cr)$, i.e., $\overline{\mathbb{C}} \setminus D$ is $c - LLC_1$.

THEOREM 2.2. If D is a Jordan domain in $\overline{\mathbb{C}}$, then the condition (3) in proposition 2.1 is equivalent to D^* is $c - LLC_1$, where the constants depend on each other.

To prove theorem 2.2, we need a lemma.

LEMMA 2.3 [W, Proposition 4.1] Let E be a set in $\overline{\mathbb{C}}$. Then

- (1) if ∂E is linearly locally connected, then so is \overline{E} ;
- (2) if E is linearly locally connected, then so is \overline{E} .

PROOF OF THE THEOREM 2.2 If D^* is $c - LLC_1$, then the proof of Lemma 2.3 (2) in [W] gives (3) in proposition 2.1. Suppose next that (3) proposition 2.1 holds, fix $z \in \mathbb{C}$ and r > 0, and choose $z_1, z_2 \in$ $D^* \cap \overline{\mathbb{B}}(z, r)$. Since $\overline{\mathbb{C}} \setminus D$ is $c - LLC_1$, there exists an arc γ joining z_1 and z_2 in $\{\overline{\mathbb{C}} \setminus D\} \cap \overline{\mathbb{B}}(z, cr)$. Now since D^* is a Jordan domain, there exists an imbedding $h: \overline{\mathbb{C}} \setminus D \to D^*$ such that h(z) = z for $z \in \overline{\mathbb{C}} \setminus D$ with $d(z, \partial D^*) > \epsilon$, where $0 < \epsilon < \min(d(z_j, \partial D), r), j = 1, 2$. Then for each $z \in \overline{\mathbb{C}} \setminus D$, $|h(z) - z| \le \epsilon$ and hence $h(\gamma)$ is an arc joining z_1 and z_2 in $D^* \cap \overline{\mathbb{B}}(z, cr + r)$. Then D^* is $c' - LLC_1$ with c' = c + 1.

Next let f map the unit disk \mathbb{B} conformally onto the bounded Jordan domain D in \mathbb{C} . Then by the Caratheodory extension theorem $f: \mathbb{B} \to D$ D admits an extension to a homeomorphism $f: \overline{\mathbb{B}} \to \overline{D}$. The second set of conditions in terms of the conformal mapping $f \cdot \mathbb{B} \to D$ are as follows [P]:

PROPOSITION 2.4 [P] Suppose that D is a bounded Jordan domain in \mathbb{C} , that $w_0 \in D$ and that f is as above with $w_0 = f(0)$. Then the following conditions are equivalent, where the constants c and $\delta > 0$ need not be the same in every condition:

D is a c-John disk.
 (2)

$$\frac{|f'(rz)|}{|f'(\rho z)|} \le c \big(\frac{1-r}{1-\rho}\big)^{\delta-1}$$

for |z| = 1, $0 \le \rho \le r < 1$;

If dia $(D) \leq q d(w_0, \partial D)$, then the various constants c and δ depend only on q and on each other.

THEOREM 25 Suppose that D is a bounded simply connected domain in \mathbb{C} and that f maps the unit disk \mathbb{B} conformally onto D with $f(0) = w_0$ for some $w_0 \in D$. If D is a c-John disk, then it can be exhausted by Jordan domains

$$D_j = f(\mathbb{B}(0, r_j)), \qquad 0 < r_j < 1$$

which are also c-John disks.

KIWON KIM

PROOF. Let $h: \mathbb{B} \to \mathbb{B}$ be a conformal mapping definded by $h(z) = r_j z$ for $0 < r_j < 1$ and let $g = f \circ h$. Then g maps the unit disk \mathbb{B} conformally onto D with $g(0) = w_0$. Obviously D_j is a Jordan domain. To show that D_j is a c-John disk, it suffices to show by proposition 2.4 (2) that

$$\frac{|g'(rz)|}{|g'(\rho z)|} \le c_1 \left(\frac{1-r}{1-\rho}\right)^{\delta-1}$$
(2.6)

for some constants c_1 and δ which are the same constants to make D c-John disk, where |z| = 1, $0 \le \rho \le r < 1$. Since $g' = r_j f'$, $0 \le \rho r_j \le rr_j < r_j < 1$ and since proposition 2.4 (2) also holds for bounded simply connected John disks (see [P, Theorem 1 (4)]), we obtain

$$\frac{|g'(rz)|}{|g'(\rho z)|} = \frac{|f'(rr_j z)|}{|f'(\rho r_j z)|} \le c_1 \left(\frac{1 - rr_j}{1 - \rho r_j}\right)^{\delta - 1}$$
(2.7)

for some constants c_1 and δ which depend only on c. Since

$$\big(\frac{1-rt}{1-\rho t}\big)^{\delta-1}$$

is a nondecreasing function for 0 < t < 1, we obtain by (2.7)

$$rac{ert g'(rz)ert}{ert g'(
ho z)ert} \leq c_1ig(rac{1-rr_j}{1-
ho r_j}ig)^{\delta-1} \leq c_1ig(rac{1-r}{1-
ho}ig)^{\delta-1}.$$

This yields inequality (2.6).

Thus proposition 2.1 and theorem 2.2 also hold for bounded simply connected domains in \mathbb{C} .

References

- [GHM] F W Gehring, K. Hag and O. Martio, Quasihyperbolic geodesics in John domains, Math. Scand 65 (1989), 75-92.
- [NV] R. Nakki and J. Vaisala, John disks, Expo. Math. 9 (1991), 3-43.
- [P] C. Pommerenke, One-sided smoothness conditions and conformal mappings, J. London Math. Soc. 26 (1982), 77-82.

[W] MF Walker, Linearly locally connected sets and quasiconformal mappings, Ann Acad Sci Fenn. Ser A I Math. (1986), 77-86.

Department of Mathematics Silla University Pusan 617-736, Korea *E-mail*: kwkim@silla.ac.kr