CERTAIN CLASSES OF SERIES IDENTITIES INVOLVING BINOMIAL COEFFICIENTS

Young Joon Cho and Keumsik Lee

1. Introduction and Preliminaries

Lots of formulas for series involving binomial coefficients have been developed in many ways.

Vowe and Seiffert [7] showed the following series identity:

(1.1)
$$\sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{2^k (n+k+1)}$$

$$= \frac{2^n (n-1)! \ n!}{(2n)!} - \frac{1}{n \cdot 2^n} \quad (n \in \mathbb{N} := \{1, 2, 3, \dots \})$$

by evaluating the Eulerian integral

(1.2)
$$\int_0^1 \left(1 - \frac{t}{2}\right)^{n-1} t^n \ dt.$$

Srivastava [6] evaluated (1.1) with the aid of a summation formula involved in the hypergeometric series ${}_{2}F_{1}$ which is due to Kummer [3] (see also Rainville [5, p. 69, Exercise 3]):

(1.3)
$${}_{2}F_{1}(a, 1-a; b; \frac{1}{2}) = \frac{\Gamma(\frac{b}{2})\Gamma(\frac{b+1}{2})}{\Gamma(\frac{b+a}{2})\Gamma(\frac{b-a+1}{2})}$$
$$(b \neq 0, -1, -2, \cdots)$$

Key words and phrases: hypergeometric series, contiguous function relations.

Received March 3, 2001 Revised Semtember 24, 2001.

²⁰⁰⁰ Mathematics Subject Classification Primary 33D90; Secondary 33C05, 33B15.

where the so-called hypergeometric series ${}_{2}F_{1}$ (also denoted by F) is defined by

$$(1.4) {}_{2}F_{1}(a, b ; c ; z) = {}_{2}F_{1}\left[\begin{array}{cc} a, b ; \\ c ; \end{array} z \right] := \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!},$$

where a, b and c are arbitrary complex constants and $(\alpha)_n$ denotes the Pochhammer symbol (or the generalized factorial, since $(1)_n = n!$) defined by

(1.5)
$$(\alpha)_n := \begin{cases} 1 & (n=0) \\ \alpha(\alpha+1)\cdots(\alpha+n-1) & (n \in \mathbb{N}). \end{cases}$$

Very recently Choi, Zörnig and Rathie [2] obtained following formulas similar to (1.1):

(1.6)
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{k}{2^k (n+k)(n+k+1)} = \frac{2^{n-1} (n!)^2}{(2n+1)!} - \frac{1}{2^{n+1}};$$

(1.7)
$$\sum_{k=0}^{n-2} (-1)^k \binom{n-2}{k} \frac{k}{2^k (n+k)(n+k+1)}$$

$$= \frac{3 \cdot 2^n \cdot (n!)^2}{(n-1)(2n)!} - \frac{n+2}{(n-1)2^{n-1}},$$

by using summation formula contiguous to (1.3) (see Lavoie et al. [4]) and contiguous function relations (see Cho et al. [1]).

In fact, we are trying to give more general series identities including (1.6) and (1.7) as special cases by making use of known (presumably new) summation formulas for ${}_2F_1$.

From the fundamental functional relation of the Gamma function Γ , $\Gamma(z+1)=z\Gamma(z)$, we have

(1.8)
$$(\alpha)_n = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)};$$

$$\Gamma(n+1) = n! \quad (n \in \mathbb{N} \cup \{0\}),$$

where Γ is the well-known Gamma function whose Weierstrass canonical product form is given by

(1.9)
$$\left\{ \Gamma(z) \right\}^{-1} = z e^{\gamma z} \prod_{k=1}^{\infty} \left(1 + \frac{z}{k} \right) e^{-\frac{z}{k}},$$

 γ being the Euler-Mascheroni's constant defined by

(1.10)
$$\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \cong 0.577215664 \cdots .$$

From definition (1.5) and (1.8), we can easily deduce the following formula:

(1.11)
$$(\alpha)_{n-k} = \frac{(-1)^k (\alpha)_n}{(1-\alpha-n)_k},$$

which, for $\alpha = 1$, yields immediately

(1.12)
$$(-n)_k = \begin{cases} \frac{(-1)^k n!}{(n-k)!} & \text{if } 0 \le k \le n \\ 0 & \text{if } k > n. \end{cases}$$

The binomial coefficient is defined and written in the following form:

(1.13)
$$\begin{pmatrix} \alpha \\ k \end{pmatrix} := \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{k!}$$

$$= \frac{\Gamma(\alpha + 1)}{k! \Gamma(\alpha - k + 1)} = \frac{(-1)^k (-\alpha)_k}{k!},$$

from which it follows that

(1.14)
$$\frac{\Gamma(\alpha-n)}{\Gamma(\alpha)} = \frac{(-1)^n}{(1-\alpha)_n} \quad (\alpha \neq 0, \pm 1, \pm 2, \cdots).$$

From (1.5), it is not difficult to show that

(1.15)
$$(\alpha)_{2n} = 2^{2n} \left(\frac{\alpha}{2}\right)_n \left(\frac{\alpha+1}{2}\right)_n \quad (n \in \mathbb{N} \cup \{0\}),$$

which, in view of (1.8), follows also from Legendre's duplication formula for the Gamma function

(1.16)
$$\Gamma\left(\frac{1}{2}\right)\Gamma(2z) = 2^{2z-1}\Gamma(z)\Gamma\left(z + \frac{1}{2}\right),$$

in which $\Gamma(\frac{1}{2})$ is evaluated as $\sqrt{\pi}$.

In this paper we are aiming at providing the following formulas similar to (1.1), (1.6) and (1.7) by making use of known summation formulas for ${}_{2}F_{1}$ and some of their contiguous relations.

(1.17)
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{2^k} = \frac{1}{2^n};$$

(1.18)
$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{n+k-1}{2^{k}} = -\frac{1}{2^{n}};$$

$$\sum_{k=0}^{n-4} (-1)^k \binom{n-4}{k} \frac{k}{2^k (n+k)(n+k+1)} = \frac{5n \cdot 2^n \cdot \left((n-1)! \right)^2}{(n-3)(n-2)(2n-2)!} - \frac{(n^2 + 5n - 4) \cdot 2^{3-n}}{(n-3)(n-2)};$$

$$\sum_{k=0}^{n-5} (-1)^k {n-5 \choose k} \frac{1}{2^k (n+k)} = \frac{1}{2n-5} \left\{ \frac{2^{n-1} (n-5)! (n-1)!}{(2n-6)!} - \frac{(4n^3 - 38n^2 + 110n - 100)2^{5-n}}{(n-5)(n-4)(n-3)} \right\};$$

$$(1.21) \sum_{k=0}^{n-5} (-1)^k {n-5 \choose k} \frac{1}{2^k (n+k)(n+k+1)}$$

$$= \frac{(n-5)!}{2^{n-3}} \left\{ \frac{2(n^2+n-4)!}{(n-2)!} - \frac{(n-1)(2n-3)2^{2n-1}(n-1)!}{(2n-2)!} \right\};$$

$$(1.22) \sum_{k=0}^{n-3} (-1)^k \binom{n-3}{k} \frac{1}{2^k (n+k)(n+k+1)(n+k+2)} = \frac{(n+1) \cdot 2^{n-1} (n-3)! (n-1)!}{(2n-1)!} - \frac{2^{2-n}}{(n-1)(n-2)};$$

$$(1.23) \quad \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(n+k-3)(n+k-4)}{2^k} = \frac{6-n}{2^{n-1}};$$

$$(1.24) \quad \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(n+k-6)(n+k-5)(n+k-4)}{2^k} = \frac{3(n-5)}{2^{n-3}};$$

$$\sum_{k=0}^{n-2} (-1)^k \binom{n-2}{k} \frac{n+k+2l-2}{2^k \prod_{j=1}^{2l} (n+k+j-1)}$$

$$= \frac{(n-2)!}{2^{n-2}} \left\{ \frac{2^{2n-2}(n+l-1)!}{(k-1)! (2n+2l-3)!} - \frac{l!}{(2l-1)! (n+l-2)!} \right\}$$

$$(l, n \in \mathbb{N}).$$

We also point out relevant connections of the series identities presented here with those given elsewhere.

2. Series Identities and Proofs

For simplicity in printing, we use the notations

$$F = {}_{2}F_{1}(a, b \; ; c \; ; z),$$
 $F(a+) = F(a+1, b \; ; c \; ; z),$
 $F(a-) = F(a-1, b \; ; c \; ; z),$
 $F(a+,b-) = F(a+1, b-1 \; ; c \; ; z)$

together with similar notations F(b+), F(a-,c+) and so on.

Lavoie et al. [4] obtained the following summation formula contiguous to (1.3): (2.1)

$${}_{2}F_{1}(a, 2-a; b; \frac{1}{2}) \qquad (b \neq 0, -1, -2, \cdots)$$

$$= \frac{\Gamma(\frac{1}{2})\Gamma(b)}{2^{b-2} \cdot (1-a)} \left\{ \frac{1}{\Gamma(\frac{b-a}{2})\Gamma(\frac{b+a-1}{2})} - \frac{1}{\Gamma(\frac{b-a+1}{2})\Gamma(\frac{b+a-1}{2})} \right\}$$

Now, let $S_{\lambda,\mu}$ be the sum in the left side of (2.1). It is not difficult to express $S_{\lambda,\mu}$ as in the following form:

$$(2.2) S_{\lambda,\mu} := \sum_{k=0}^{\infty} (-1)^k \binom{\lambda-2}{k} \frac{\binom{\lambda+k-1}{k}}{\binom{\mu+k-1}{k}2^k} \qquad (\mu \neq 0, -1, -2, \cdots).$$

Since

(2.3)
$${n-2 \choose k} = 0 \qquad (k \ge n-1; \quad n \in \mathbf{N}),$$

the sum in (2.2) will terminate at k = n - 2 in the special case when $\lambda = n \in \mathbb{N}$.

Some further consequences of the general result (2.2) are worthy of note. Indeed, for every non-negative integer l, we obtain following

identity by using $S_{\lambda,\lambda+2l}$

$$\sum_{k=0}^{\infty} (-1)^k {\lambda-2 \choose k} \frac{1}{2^k \prod_{j=1}^{2l} (\lambda+k+j-1)}$$

$$= \frac{(\lambda-1)!}{2^{\lambda-2}(1-\lambda)} \left\{ \frac{2^{2\lambda-2}(\lambda+l-1)!}{(l-1)! (2\lambda+2l-2)!} - \frac{l!}{(2l)! (\lambda+l-2)!} \right\}$$

$$(\lambda, \neq 0, -1, -2, \cdots).$$

Next, letting $\mu = \lambda + 2l + 1$ with l replaced by l - 1, we find that, for $l \in \mathbb{N}$,

(2.5)

$$\sum_{k=0}^{\infty} (-1)^k {\lambda-2 \choose k} \frac{1}{2^k \prod_{j=0}^{2l-2} (\lambda+k+j)}$$

$$= \frac{(\lambda-1)!}{2^{\lambda-1}(1-\lambda)} \left\{ \frac{(l-1)!}{(2l-2)! (\lambda+l-2)!} - \frac{2^{2\lambda-2}(\lambda+l-2)!}{(l-1)! (2\lambda+2l-4)!} \right\}.$$

Upon subtracting (2.4) from (2.5) with the help of (2.3), arrives immediately at our desired identity (1.25).

Setting l = 1 and l = 2 in (1.25), we obtain the following special cases:

$$(2.6) \sum_{k=0}^{n-2} (-1)^k \binom{n-2}{k} \frac{1}{2^k (n+k+1)} = \frac{2^{n+1} (n!)^2}{(n-1)(2n)!} - \frac{1}{(n-1)2^{n-2}};$$

$$(2.7)$$

$$\sum_{k=0}^{n-2} (-1)^k \binom{n-2}{k} \frac{1}{2^k (n+k)(n+k+1)(n+k+3)}$$

$$= \frac{(n-2)!}{2^{n-2}} \left\{ \frac{2^{2n-2}(n+1)!}{(2n+1)!} - \frac{1}{3 \cdot n!} \right\}$$

and so on.

Recall another summation formula for $_2F_1$ contiguous to (1.3) (see Lavoie et al. [4]):

$${}_{2}F_{1}(a, 4-a; b; \frac{1}{2}) \qquad (b \neq 0, -1, -2, \cdots)$$

$$= \frac{\Gamma(\frac{1}{2})\Gamma(b)\Gamma(1-a)}{2^{b-4}\Gamma(4-a)} \left\{ \frac{a-2b+3}{\Gamma(\frac{b-a+1}{2})\Gamma(\frac{b+a-4}{2})} + \frac{a+2b-7}{\Gamma(\frac{b-a}{2})\Gamma(\frac{b+a-3}{2})} \right\}.$$

Now let $T_{\lambda,\mu}$ be the sum in the left side of (2.8) and put specific values for $\lambda = n$ and $\mu = n$, n + 1 and n + 2.

Applying the same procedure in the proof of (1.25) to $T_{n,n}$ and $T_{n,n+1} - T_{n,n+2}$, we obtain (1.17) and (1.19).

For the proof of (1.24), recall a contiguous function relation (see Cho *et al.* [1]):

$$(2.9) (B-1)F = (B-C)F(B-) + (C-1)F(B-, C-).$$

If we replace A, B, C and z in (2.9) by a, -a-3, b and $\frac{1}{2}$ respectively, we obtain

(2.10)
$$F(a, -a-3; b; \frac{1}{2}) = \frac{a+b+3}{a+4} F(a, -a-4; b; \frac{1}{2}) + \frac{1-b}{a+4} F(a, -a-4; b-1; \frac{1}{2}).$$

Lavoie et al. [4] obtained the following summation formula contiguous to (1.3): For $b \neq 0, -1, -2, \cdots$, (2.11)

$$_2F_1ig(a, -a-4; b; rac{1}{2}ig) = rac{\Gamma(rac{1}{2})\Gamma(b)}{2^{b+4}} \ imes \left\{ rac{4b^2 - 2ab - a^2 + 8b - 7a}{\Gamma(rac{b}{2} - rac{a}{2} + rac{1}{2})\Gamma(rac{b}{2} + rac{a}{2} + 2)} + rac{4b^2 + 2ab - a^2 + 16b - a + 12}{\Gamma(rac{b}{2} - rac{a}{2})\Gamma(rac{b}{2} + rac{a}{2} + rac{5}{2})}
ight\}.$$

Finally, setting (2.11) in (2.10) and letting b = a - 3, yields

(2.12)
$$F(a, -a-3; a-3; \frac{1}{2}) = \frac{15a^2 \cdot \Gamma(a-2)}{(a+4) \cdot 2^{a+2}\Gamma(a+1)} - \frac{3(a^2-23a+32) \cdot \Gamma(a-3)}{(a+4) \cdot 2^{a+2}\Gamma(a)}$$

which, in view of (1.13), can be written in the equivalent form: (2.13)

$$\sum_{k=0}^{\infty} (-1)^k \binom{a+3}{k} \frac{(a+k-3)(a+k-2)(a+k-1)}{(a-3)(a-2)(a-1)2^k}$$
$$= \frac{3}{(a-1)(a-3)2^a}.$$

If we set $a = n \in \mathbb{N}$ in (2.13) and consider (2.3), we immediately reach at the identity (1.24) by letting n + 3 = n' and dropping the prime on n.

Recalling contiguous function relation (see Cho et al. [1])

$$(A-1)(1-z)F = (A+B-C-1)F(A-) + (C-B)F(A-, B-),$$

and setting A = a, B = 3 - a, C = b and $z = \frac{1}{2}$, we obtain

(2.14)
$$F[a, 3-a; b; \frac{1}{2}] = \frac{2(2-b)}{a-1}F(a-1, 3-a; b; \frac{1}{2}) + \frac{2(a+b-3)}{a-1}F(a-1, 2-a; b; \frac{1}{2}),$$

which, for b = a + 3 and applying (1.3) and (2.1), yields our desired identity (1.22) by considering (2.3).

Similarly, other identities can be proved by using ${}_{2}F_{1}$ formulas (see [4, p. 297-298]) and contiguous function relations (see [1]).

References

- Y.J Cho, TY Seo and J Choi, Note on Contiguous Fuction Relations, East Asian Math J 15(1) (1999), 29-38
- [2] J. Choi, Peter Zornig and A.K. Rathie, Sums of certain class of series, Comm. Korean Math. Soc. 14(3) (1999), 641-647
- [3] E E Kummer, Über die hypergeometrische Reihe ..., J Reine Angew Math 15 (1836), 39-83, 127-172.
- [4] J.L Lavoie, F. Grondin and A.K. Rathie, Generalization of Whipple's theorem on the sum of a 3F₂, J. Comput. Appl Math 72 (1996), 293-300.
- [5] E.D. Rainville, Special Functions, The Macmillan Company, New York (1960).

- [6] H.M. Srivastava, Sums of a certain family of series, Elem Math. 43 (1988), 54–58
- [7] M Vowe and H J Seiffert, Aufgabe 946, Elem Math 42 (1987), 111-112

Department of Mathematics College of Natural Sciences Pusan National University Pusan 609-735, Korea E-mail: choyj79@hanmail.net