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MONOTONICITY OF EUCLIDEAN CURVATURE
UNDER LOCALLY UNIVALENT FUNCTIONS

TAI SUNG SONG

ABSTRACT Let K (z,) denote the euclidean curvature of the curve
¥ at the pomt z. Flinn and Osgood proved that if f is a univalent
mapping of the open umt disk D = {z - |z] < 1} into itself with f (0} =
0 and | f/(0)| < 1, then K (0,7) < K (0, f o) for any C? curve v on
D through the orgin with K (0,%) > 4. In this paper we establish a
generalization of the Flinn-Osgood Monotonicity Theorem

1. Introduction

Let v: 2z = 2(¢), t € [a,b], be a C? curve in the complex plane with
2'(t) # 0 for ¢t € [a,b]. The euclidean curvature K (z,7) of the curve
v at the point z = z(¢) is the rate of change of the angle 8 that the
tangent vector makes with the positive real axis respect to arc length :

_d9 dedt 1 2"(t)
KNG " wa |z'(t)11m{ #(0) }

If f is holomorphic and locally univalent in a neighborhood of <y, then
foxisalso a C? curve with nonvanishing tangent. Let w = f(z) and
o = foy. Then w=w(l) = f(2(¢)), t € [a,b] is a parametrization of
o. We have
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wo)= - g {2 ®
K (w,) tw'(mh“{w'(t)}
1 {f”(z)z’(t)2+f’(2)z”(t)}.
TRENEL] B0

This yields the formula for the change of the euclidean curvature under
the locally univalent function f :

K (F(2),fon) [/ (2)] = K (,7) +Im{f (2) 2(1) } '

f'(z) |2(t)]

Euclidean curvature is closely related to the concepts of local uni-
valence and uniform local univalence. The notion of uniform local
univalence is defined relative to hyperbolic geometry on the open unit
disk D = {z: |2z] < 1} in the complex plane. The connection between
the derivative of a locally univalent function and euclidean curvature
has been used in a number of ways([2], [4], {7]). Flinn and Osgood
[2] established a monotonicity property of euclidean curvature. They

proved that if f is a univalent mapping of D into itself with f(0) =0
and |f'{0)] < 1, then

(1) K(0,7)<K(0,for)

for any C? curve y on D through the origin with K (0,%) > 4.

In this paper we establish a generalization of the Flinn-Osgood
Monotonicity Theorem. We give a sufficient condition for the mono-
tonicity property (1) to hold for any locally univalent function f of D
into itself with f(0) = 0 and |f’(0)| < 1. The simple condition is that

4
KO 2 oo 72y

where p( f) is the hyperbolic radius of uniform univalence.
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2. Monotonicity of euclidean curvature

We begin this section with a brief introduction to hyperbolic ge-
ometry on the open unit disk D = {z: |z| < 1} . For a general discus-
sion of hyperbolic geometry on D we refer the reader to [1], {3], and
[5]. The hyperbolic distance on D induced by the hyperbolic metric

Ap (2) ldz] = 2|d2|/ (1 - lz|2) is

a—b
1—-ab
The hyperbolic disk in D with center ¢ € D and hyperbolic radius p,
0 < p < o0, is defined by

dp (a,b) = 2tanh™*

.

Dp(a,p) ={z:dn{z,0) <p}.
Suppose f is a holomorphic function on D. For 2 € D, let p(z, f) be

the hyperbolic radius of the largest hyperbohc disk in D centered at 2
in which f is univalent. Set

p(f)=inf{p(z f): 2 € D}.
A holomorphic function f on D is called uniformly locally univalent

(in the hyperbolic sense) if p(f) > 0. The quantity p(f) is called the
hyperbolic radius of uniform wnavalence for f.

We note that

zZ—a

zED;Aa,p)@‘l

P
< tanh .
az] .

Let R = tanh £. Then

€ Dpla,p) s |z—al* < R*|1 —az?.

From the inequality |z — a|® < R?|1 — @z|®, we obtain

R? (1 . [al2)2
(1 — R? |a]2)2-

1— R?
z—( )(; <
1 — R?lal
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Thus, the hyperbolic disk Dy, (a, p) is a euclidean disk D (c,7) = {z :
|z — ¢| < 7}, where

1= (tanh§)2
1 — (tanh "23)2 |a]?

2
l—1a
a,’rztanhe lel

21— (t‘,anhg)2 |a|2.

In particular, we obtain the following result.

LEMMA 1 Dy (0,p) = D (0,tanh £).

If g(2) = a1z + ay2? + - - - is a univalent mapping of D into itself,
then the Schiffer-Tammi inequality states that

laz} < 2]ar} (1 - lad]) .

Liu and Minda- {6] proved that if f is a locally univalent funciion
of D into itself. then the number 2/tanh [p (f) /2| is an upper bound
of the hyperbolic linear invariant norm of f. The following result is a
slight modification of the result of Liu and Minda.

LEMMA 2. If f is a locally univalent function of D into tself with
f(0) =0 and |f' (0)| <1, then

o 4
PO 7O ~ tanh ()72

PROOF. If p(f) = 0, then the inequality is obvious. Suppose p{f) >
0. Then, by Lemma 1, f is univalent in the euclidean disk D(0, R),
where R = tanh[p(f)/2]. Let g(2) = f(Rz)/R. Then g is a univa-
lent mapping of D into itself with g(0) = 0. By the Schiffer-Tammi
inequality, we have

2 lg” (0} < 4lg’ (0)} (1 — |g’" (O}

Note that |¢’' (0})] = [f/ (0)| < 1 and |g" (0)| = R|f" (0}|. Therefore,
the inequality (2) yields
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1 (0
SO (1 = 1£(0)])

4 4
R tanh[p(f) /2]

<

We now establish an inequality for the change of euclidean curvature
at the origin under a locally univalent function of the unit disk IJ into
itself that fixes the origin.

'THEOREM 3 Suppose f is a locally univalent function of D wnto

itself unth f{0) = 0 and |f' (0)| < 1. If v is a C? curve on D through
the origin, then

K0,7)<K(0,for)

provided that K (0,v) > 4/ tanh [p{f) /2].

PROOFP Let a = [f”(0)|/1f (0)](1 —|f'(0)]}. Then the transfor-
mation law for euclidean curvature produces

K01 012 K0 - 4O

=K(0,y) —a+a|f(0).

The above inequality yields

(3) [F (OW(K (0, fery)—a)> K(0,7) —a

From Lemma 2, we obtain K (0,%) — « > 0. Since | f' {0)| < 1, the the
mequality {3) imphes that K (0,v) € K (0, f o) whenever K {0,7) >
4/ tanh {p(£) /2).

REMARK If f is a univalent mapping of D into iteslf, then Lemma 1
yields tanh [p (f) /2]=1. This shows that Theorem 3 is a generalization
of the Flinn-Osgood Monotonicity Theorem.
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