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MONgONICITY OF EUCLIDEAN CURVATURE 
UNDER LOCALLY UNIVALENT FUNCTIONS

Tai Sung Song

Abstract Let K (z, 7) denote the euclidean curvature of the curve 
7 at the point z. Flinn and Osgood proved that if / is a univalent 
mapping of the open unit disk Q = {2 ♦ |히 V 1} into it웒elf with f (0) = 
0 and I/7(0)| < 1, then K (0,7) < K (0, / o 7) for any C2 curve 7 on 
D through the origin with K (0,7) > 4. In this paper we establish a 
generalization of the Flmn-Osgood Monotonicity Theorem

1. Introduction

Let y ： z = ^(t), t E [a, &], be a C2 curve in 나le complex plane with 
z") 7^ 0 for t E 血 이* The euclidean curvature K (2,7) of the curve 
7 at the point z — z{t) is the rate of change of the angle 0 that the 
tangent vector makes with 난le positive real axis respect to arc length :

弋八、d0 d0 dt 1_( 2z/(t)] 
k(f)=云=击云=可严.

If f is holomorphic and locally univalent in a neighborhood of 7, 나]en 
/ o 7 is also a C2 curve with nonvanishing tangent. Let w — f(z) and 
a ~ f oy. Then w — w(t) = /(z(t)\ t E [a,6] is a parametrization of 
a. We have
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K(E =点时n{端}

1 T [J•〃⑵ gt)2+/0)/(t)
- l/'(2시 |*(t)| 广(z)*(t)

This yields the formula for the change of the euclidean curvature under 
the locally univalent function f :

K = K (z,7)+ Im {§号 j湍j} •

Euclidean curvature is closely related to the concepts of local uni­
valence and uniform local univalence. The notion of uniform local 
univalence is defined relative to hyperbolic geometry on the open unit 
disk £)= {z : I긔 v 1} in the complex plane. The connection between 
the derivative of a locally univalent function and euclidean curvature 
has been used in a number of ways([2], [4], [7]). Flinn and Osgood 
[2] established a monotonicity property of euclidean curvature. They 
proved that if / is a univalent mapping of D into itself with f (0) = 0 
and |尸(0)| < 1, then

⑴ K(0,7)<K(0,/o7)

for any C2 curve 7 on Z> through the origin with K (0,7) > 4.
In this paper we establish a generalization of the Flinn-Osgood 

Monotonicity Theorem. We give a sufficient condition for the mono­
tonicity property (1) to hold for any locally univalent function f oi D 
into itself with /(0) = 0 and |/z(0)| < 1. The simple condition is that

4
K (0,7) > +一牝 7爲 /殆 tanh (p (/) /2)

where p(/) is the hyperbolic radius of uniform univalence.
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2. Monotonicity of euclidean curvature

We begin this section with a brief introduction to hyperbolic ge­
ometry on the open unit disk D = {z : |끼 V 1}. For a general discus­
sion of hyperbolic geometry on D we refer the reader to [1], [3], and 
[5]. The hyperbolic distance on D induced by the hyperbolic metric 
Az) (z) \dz\ = 2 \dz\ / fl - is

dh (a, b) = 2tanh-1 으------二 .

1 — ab
The hyperbolic disk in D with center a E D and hyperbolic radius p、 
0 < p < oo, is defined by

Dh («,p) ^{z\dh < p}.
Suppose / is a holomorphic function on D. For z G Dz let p /) be 
the hyperbolic radius of the largest hyperbolic disk in D centered at z 
in which f is univalent. Set

P (/) = inf {p (z, f~): zeD}.
A holomorphic function / on Z) is called umformly locally univalent 
(in the hyperbolic sense) if p (/) > 0. The quantity p (/) is called the 
hyperbolic radius of uniform mwalence for

We note that

f 、 z _ a p
ze Dh (a, p)〈今-一— < tanh

1 — az L
Let R = tanh 気 Then

z 6 Dh (a? p) — 이2 < B2 11 — az^ .

From the inequality \z 一 a|2 < B2 11 — az]2 , we obtain
2

z (1Fq 冷 (1 — I이2)

1~R2 hl2 (1 一用同2)2
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Thus, the hyperbolic disk Dh (a, p) is a euclidean disk D (c,r) = {z : 
\z — c\ V r), where

1 - (tanh^)2 v p 1一 |이2

(2) |矿(0)|<시9'(0)|(1—|"(0)1).

Note 나曲; \gl (0)[ = \f (0)| V 1 and |g시 (0)| = R\fn (0)| - Therefore, 
the inequality (2) yields

c =-------- --------v~財z, r = tann  ------ --------- -q—元
1 — (tanh 号)同 2 1 一 (tanh 釘 \a\

In particular, we obtain the following result.

Lemma 1 Dh (0, p) = D(0, tanh 幼.

If g (z) = ayz + a展 + • • • is a univalent mapping of D into itself, 
then the Schiffer-Tammi inequality states that

k시 < 2 |ai| (1 — |ai]) •

Liu and Minda [6] proved that if / is a locally univalent function 
of D into itself, then the number 2/ tanh [p (/) /2] is an upper bound 
of the hyperbolic linear invariant norm of The following result is a 
slight modification of the result of Liu and Minda.

Lemma 2. If f is a locally univalent function of D into itself with 
f (0) = 0 and \ ff (0)| < 1, then

I 广'(0)1 < 4
\f (0)1 (1 - \f (0)1) - tanh [p (/) /2]'

Proof. If p (/) = 0, then the inequality is obvious. Suppose p (/) > 
0. Then, by .Lemma 1, f is univalent in the euclidean disk Z)(0,/?), 
where R = tanh [p (/) /2]. Let g(z) = f (Rz) /R. Then p is a univa­
lent mapping of D into itself with g (0) = 0. By the Schiffer-Tammi 
inequality, we have
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心0)1 v 4 — 4
顷(0)1 (1 i尸(0)1) 一 H 一 tanh 伍(/)/2] .

We now establish an inequality for the change of euclidean curvature 
at the origin under a locally univalent function of the unit disk D into 
itself that fixes the origin.

Theorem 3 Suppose f is a locally univalent function of D into 
itself with f (0) — 0 and \f (0)| < 1. If y is a C2 curve on D through 
the origin, then

K(0点)< K (0, / o 7)

provided that K (0,7) > 4/ tank \p (/) /2].

Proof Let a = \fff (0)| / \ ff (0)| (1 — \ ff (0)|). Then the transfor­
mation law for euclidean curvature produces

K (0,5) |广 ((시 " (0点) - %溫

= K(0点) —q +시尸 (0)|.

The above inequality yields

(3) \f (0)1 (K (0,f o7)-q)>K (0,7) - Q.

From Lemma 2, we obtain (0,7) — ct > 0. Since \ ff (0)| V 1, the the 
inequality (3) implies that K (0,7) < JC (0, / o 7) whenever K (0,7)> 
4/tanh[p(/)/2],

Remark If / is a univalent mapping of D into iteslf, then Lemma 1 
yields tanh [p (/) /2]=1. This shows that Theorem 3 is a generalization 
of the Flinn-Osgood Monotonicity Theorem.
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