East Asian Math J 17(2001), No 2, pp 297-301

CORRECTION TO EXISTENCE OF SOLUTION FOR GENERALIZED MULTIVALUED VECTOR VARIATIONAL INEQUALITIES WITHOUT CONVEXITY

MEE-KWANG KANG

In [3], the authors proved the following main result using Bardaro and Ceppitelli's generalization [1] of F-KKM Theorem in [2], for H-KKM multifunctions on H-spaces.

THEOREM Let $(X, \{\Gamma_K\})$ be an H-Banach space, and $\{C(x) : x \in X\}$ be a family of closed pointed convex cones with nonempty interior int C(x) in ordered Banach spaces Y.

Assume that

- 1⁰. $A: L(X,Y) \rightarrow L(X,Y)$ is a continuous mapping.
- 2⁰. $T: X \to 2^{L(X,Y)}$ be a compact valued, continuous multivalued mapping, where L(X,Y) is equipped with the weak topology.
- 3⁰. The multivalued mapping $W(x) = Y \setminus \{-int C(x)\}$ is upper semicontinuous.
- 4⁰. For each $y \in X$, $B_y = \{x \in X : \exists w \in T(y) \text{ such that } \langle Aw, x y \rangle \in -int C(x) \}$ is H-convex or empty.

Received March 2, 2001 Revised October 12, 2001 2000 Mathematics Subject Classification 49J40

Key words and phrases vector variational inequalities, H-space, H-KKM mapping, upper semicontinuous, set-valued mapping, closed graphed

This work was supported by The Research Institute of Basic Science, Dongeui University (2001)

5°. There exists a compact set $L \subset X$ and an H-compact set $E \subset X$ such that for every weakly H-convex set D with $E \subset D \subset X$

$$\{y \in D : \exists w \in T(y) \text{ such that } \langle Aw, x - y \rangle \notin -int C(x),$$

for all $x \in D \} \subset L.$

Then the following generalized multivalued vector variational inequality (GMVVI) is solvable;

(GMVVI) Find $x_0 \in K$ such that for each $x \in K$, there exists $s_0 \in T(x_0)$ such that

$$\langle As_0, x - x_0 \rangle \notin -int C(x_0).$$

In this note, we point out some mistakes of the proof and correct them.

Mistake 1. Since the following two x_0s in the inequality

$$\langle As_0, x - x_0 \rangle \notin -\text{int } C(x_0)$$

of the (**GMVVI**) are same each other, to solve the (**GMVVI**), the inequality

$$\langle Aw, x-y
angle
otin - \mathrm{int} \ C(x)$$

in the conditions 4^0 , 5^0 and the definition of F(x) in the Proof of Theorem 2 must be changed into the inequality

$$\langle Aw, x-y \rangle \notin -\mathrm{int} \ C(y).$$

Mistake 2. In the Proof of Theorem 2, the authors explained

"Since $y_n \in F(x)$ for all n, there exists $t_n \in T(y)$ such that \cdots ".

And then they used the compactness of T(y) for the fixed y to obtain the limit of the sequence $\{t_n\}$. They obviously mistook y instead of y_n . They should have taken y_n for all n, and maybe they should have used the compactness of $T(y_n)$ for each n according to the definition of F(y).

Mistake 3. In the Proof of Theorem 2, the authors did not explain what the sequence $\{x_n\}$ and the point x_0 are. Maybe they mistook the sequence $\{x_n\}$ and the point x_0 instead of $\{y_n\}$ and y_0 , respectively.

Now we correct the Proof of Theorem 2.1 in [3] by using the upper semicontinuity instead of the continuity of the multivalued mapping $T: X \to 2^{L(X,Y)}$ in the hypothesis of Theorem 2.1.

For our proof, we need the following lemma.

LEMMA. Let X, Y be topological spaces and $W : X \to 2^Y$ a multivalued mapping. If Y is regular, and W is closed valued and upper semicontinuous, then the graph $G_r(W)$ of W is closed.

PROOF Let $\{x_{\alpha}\}$ and $\{y_{\alpha}\}$ be nets in X and Y, respectively such that $x_{\alpha} \to x_0, y_{\alpha} \in W(x_{\alpha})$ and $y_{\alpha} \to y_0$. Assume that $y_0 \notin W(x_0)$, then by the regularity of Y, there exist neighborhoods U and V of y_0 and $W(x_0)$ respectively such that $U \cap V = \emptyset$. Since W is upper semicontinuous, there exists a neighborhood M of x_0 such that for $x_{\alpha} \in M, W(x_{\alpha}) \subset V$. Hence for $x_{\alpha} \in M, W(x_{\alpha}) \cap U = \emptyset$, which contradicts the fact that $y_{\alpha} \to y_0$.

Now we show that F(x) is closed for all $x \in X$ by using the upper semicontinuity of the multivalued mapping $T: X \to 2^{L(X,Y)}$ as the following Correction. **Correction.** Define a set-valued mapping $F: X \to 2^X$ by, for $x \in X$

 $F(x) = \{y \in X \mid ext{there exists} \}$

$$w \in T(y)$$
 such that $\langle Aw, x - y \rangle \notin -int C(y) \}$.

Let $\{y_{\alpha}\}$ be a net in F(x) such that $y_{\alpha} \to y_0 \in X$. Then for each $\alpha \in I$, there exists $w_{\alpha} \in T(y_{\alpha})$ such that

$$\langle Aw_{\alpha}, x-y_{\alpha} \rangle \notin -\mathrm{int} C(y_{\alpha}).$$

Hence the net $\{w_{\alpha}\}$ clusters at some point $w_0 \in T(y_0)$. In fact, suppose that $\{w_{\alpha}\}_{\alpha \in I}$ does not cluster in L(X,Y). Then $t \in T(y_0)$ is not a cluster point of the net $\{w_{\alpha}\}$, so that there exists an open neighborhood U(t) of t such that $U(t) \cap \{w_{\alpha} | \alpha \in I\}$ is finite. Since $\{U(t) : t \in$ $T(y_0)\}$ is an open cover of a compact set $T(y_0)$, there exists a finite subcover $\{U(t_i) | i = 1, 2, \dots, m\}$ of $T(y_0)$. Since $U := \bigcup_{i=1}^m U(t_i)$ is a neighborhood of $T(y_0)$, by the upper semicontinuity of T at y_0 , there is a neighborhood V of y_0 such that $T(V) \subset U$.

On the other hand, since $y_{\alpha} \to y_0$, there exists $\alpha_0 \in I$ such that $y_{\alpha} \in V$ for $\alpha \geq \alpha_0$. Therefore $w_{\alpha} \in T(y_{\alpha}) \subset T(V) \subset U = \bigcup_{i=1}^{m} U(t_i)$ for $\alpha \geq \alpha_0$, and so $\{w_{\alpha} | \alpha \in I\} \cap U(t_j)$ is infinite for some $j \in \{1, 2, \dots, m\}$. That is a contradiction to the choice of $U(t_j)$. Thus we can choose a convergent subnet $\{w_{\beta}\}$ of the net $\{w_{\alpha}\}$, say $w_{\beta} \to w_0$. Without loss of generality, we can assume that $w_{\alpha} \to w_0$. Since $w_{\alpha} \in T(y_{\alpha})$ and $y_{\alpha} \to y_0$, from the upper semicontinuity of T, $w_0 \in T(y_0)$, and from the continuity of A,

$$\langle Aw_{\alpha}, x - y_{\alpha} \rangle \rightarrow \langle Aw_0, x - y_{\alpha} \rangle.$$

Since Aw_0 is continuous from the weak topology of X to the weak topology of Y

$$\langle Aw_0, x - y_{\alpha} \rangle \rightarrow \langle Aw_0, x - y_0 \rangle$$
 weakly in Y.

Since

$$\langle Aw_{\alpha}, x - y_{\alpha} \rangle \notin - \operatorname{int} C(y_{\alpha}),$$

 \mathbf{or}

$$\langle Aw_{oldsymbol{lpha}}, x-y_{oldsymbol{lpha}}
angle \in W(y_{oldsymbol{lpha}}),$$

and W is closed-valued and upper semicontinuous, by Lemma

$$\langle Aw_0, x-y_0 \rangle \in W(y_0),$$

that is,

$$\langle Aw_0, x-y_0 \rangle \notin -\mathrm{int} \ C(y_0).$$

Therefore $y_0 \in F(x)$ and so F(x) is closed for every $x \in X$.

References

- C. Bardaro and R. Ceppitelli, Some further generalizations of Kanaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl. 132 (1988), 484-490
- [2] K Fan, A generalization of Tychonoff's fixed point theorem, Math Ann 142 (1961), 305-310
- [3] A H Siddiqi, R Ahmad and M F Khan, Existence of solution for generalized multivalued vector variational mequalities without convexity, Indian J. Pure Appl Math 28(8) (1997), 1057-1060

Department of Mathematics Dongeui University Pusan 614-714, Korea *E-mail*: mee@hyomin.dongeui.ac.kr