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ON INTEGRAL REPRESENTATION
WITH RESPECT TO VECTOR-VALUED
FINITELY ADDITIVE MEASURES

Dong Hwa KiM AND YOUNGHEE LEE

1. Introduction

In [5], [8], the authors considered the integral representation of
bounded linear operators of C(9, X) into Y, where S denotes a compact
Hausdorff space, X and Y are Banach spaces, and C(S, X) denotes the
Banach space of all X-valued continuous functions defined on S.

It is well-known that an integration theory is to define the integral
of a simple function and then extend the integral by some limit process
to a general case of functions in [3], [4].

In (5], A. De Korvin and L. Kunes generated the integration theory
of scalar-valued functions with respect to operator-valued measures
obtained by D. R. Lewis in [6].

The purpose of this paper is to give an integral representation for the
case of vector-valued functions with respect to finitely additive measure

taking values in locally convex topological vector spaces, using both a
weak and a strong approach.

2. Notations and preliminaries
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Let X be a normed space and Y be a locally convex Hausdorff
linear topological space generated by the family Q of continuous semi-
norms on Y. Let X’ and Y’ be the topological duals of X and Y,
respectively. Let (S, ) be a measurable space and an operator-valued
measure y : »_ —> L{X,Y) be an additive set function with

plUne  Ey) = ip(En), E, € Z with Us2, By € Z,
n=1

E.NE,=%3:+#35), %, j=1,2,--, the series being unconditionally
convergent with respect to the topology of simple convergence. Let us
suppose that there exists a vector measure v: }, — X and let u be a
non-negative real-valued measure on » . If lim, gyov(E) = 0, then v
is called p~continuous and this is denoted by v <« pu. When v <« u,
is sometimes said to be a control measure for v.

It is well-known in [1] that if & : 5 — L{X,Y) is an operator-
measure, then the set function i, : 3 — Y, defined by po(E) = p(E)x
is a vector measure and conversely, if u(-)z is a vector measure, then
p: Y, — L{X,Y) is countably additive with respect to the topology of
simple convergence in L{X,Y"). From the above result it can be proved
that the set function ¢'p : 3 — X’ defined by (y'u)(E)z = 3/ (u{ E)x)
for £ € ) is an X'-valued measure. If 4’ € Y’ and ¢ € Q, we will
write ¥’ < g whenever |y'(y)| < ¢(y) for y € Y.

DEFINITION 2 1 ([3]) We define the g-variation of g, which is a
finitely set funtion on ¥, as

Wl(B) = sup Y q(u(EN E), Be Y,

=1

where the supremum is taken over all finite pairwise disjoint sets E,, €
Y. For each 3 € Y’, we write the variation of 'y, |y'ttl4(+), as

W ul(B) = sup Y | Y(ENE) | -
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DEFINITION 2.2 ([3], [4]). We define the g-semi-variation of y as
17l (B) = sup ly/ulg(B), Ee)
¥'<q

which is non-negative. Note that || £ ||, (F) < 2suppcg || ¥ u(F) |
and || & ||g (E) < oo whenever || ¥'u ||, (E) < oo for each 3 € Y.
It is proved easily that || i |j; (-) is monotone, subadditive and that
12lq(E) <V 2 llq (E) < 4supy. <, suppc g 19 6(F))-

We now develop an integration with respect to an operator-valued
measure. Recall that in {1], [5] a sequence of functions (f,) converges
to f in semivariation if for every € > 0,8 > 0 there exists some N such
that forn > N, | Z g ({s: |fu = f] > 6}) < e

3. The weak integrals

Let p: )] — L(X,Y) be a strongly finite measure with |y'uls(E) <
oo for £ € )7 and 3 € Y’. Also the integrands are assumed to be
measurable.

DEFINITION 31 A function f : § — X is said to be a weakly
p-integrable if the following conditions hold.

(1) fis ¢/ p -integrable in the sense of [3].

(2) for E € ¥ there exists an element yx € Y such that y'(yg) =
S fdy'n for every y € Y.

If f is p-integrable, we denote yg = || g Jdu. We write sometimes
S fdp for [, f(s)du(s). It follows from Definition 3.1 that every sim-
ple function with representation f = 5"  z.xg, : S — X, where
XE, is the characteristic function of the sets F; € Y, z, € X and
E,NE;=0fori#j1,5j=12,--,n,is y-integrable over E and we
define the integral of f as

[Efdﬂ= Zmdz(En EYeX, Ee Z
=1

It is easily verified that if f : § — X is a simple function such that
9(f) = supq(f(s)) for every g € Q, s € S, then q(fp fdu) <|| £ Il
P llq (B) for E € 3, where || f ||ls= sup,es {f(s)l.
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LEMMA 3.2 If f: 8 — X is o u-integrable, then

(1) qlJg fa'w) < fp|fldly'n| for E € 3.
(2) the set function defined by $(E) = [ fdp is a measure on ).

PROOF. (1) If f is y/p-integrable, then |f| is |y'u(-)|-integrable.
Thus, if (f,, ) is a defining sequence of simple functions for ' y-integrabil-

ity of f, then {f,| is a defining sequence corresponding to the function
| /| and

q( [E fnd(y’ﬂ)) < fE \fuldly'n} for E € >

which completes the proof.
(2) From (3], p122, Proposition 5, since

,2 /E 1 fd(y'p) = /U . fa(y'u),

it follows

N yuE) =yl E).

t=1 z=1

Hence p is countably additive by Pettis theorem.

THEOREM 3.3. Suppose Y 1s sequentrally complete. If there is a
sequence (f,) of simple functions which converges to f on S, and
Je faly 1] = limae0 [ fadly/ul, then it follows

/ fdp = lim / [ri @l
Fol k—oo E

for a subsequence (f,.) of (f,).



ON INTEGRAL REPRESENTATION 257

PROOF Since a sequence {f,) of simple functions converges to f,
fn is a bounded measurable function and |f,| < |f| forn =1,2,---

For each € > 0, let F,, = {s € S ' |f — fn| > €} and E, = Ur.,, Fx
Then, for every g € Q,

of [[futs— [ prti)

< sup / {f — faldly' 1] + sup [ | fldly
) ¥y <gJENES

¥v'<qJENE,

+ sup / | faldly p] + sup / [ — fmldly 1]
EnEg Yy <gJENE,

y'<q

+ sup j | fldly’ 1] + sup / | frmldly' ]
y'<qgJENEs, y'<q J ENES

m

<elflly (BNE)+21 Al (BN E)
Fellfly (BAEL) +2] @ lly (BN By)

for £ € §, which shows that ({ f.d(y'p)) is Cauchy uniformly with
respect to B € ) and since Y is sequentially complete, there is an

element yp in Y such that ¢/ (yg) = ¥’ (limnseo [ fadp) = [5 fdy'1).
Hence f is py-integrable.

Let f be |y p|-integrable, that is, there exists a sequence (f,) of
simple functions such that {imy 00 [ |fo — fld[y's2| = 0. Then

sup [ 171dly'ul < sup [ \F = Faldly/ ] + sup / | Fulld(e )
y' <¢g y<qgJE

which implies that f is u-integrable. For each k there exists a ng such
that

sup ] 1~ Foldi/sl < 3.
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Let T 5 = [ fn.dp for E €Y. Then for g € @,
Q(IEn’E - xm,E) = Q(/ (fnk - fmk)dﬂ)
= sup ly [ (o — fome )i

< sup / o = fo |l B

I<q

Thus zx g is Cauchy unifoimly in Y, and therefore it converges. Since
Y is sequentially complete, there exists an element yg € Y such that
YE = iMoo Tk, B~

Then we show that for every ¥’ € Y', ¢/ (yg) = [g fd{y'p). In fact

e~ [ sawml = [ (Gn. - f)d(y'u)}
< sup /; [ frx — fldl )

—0 ask — o0,

and since %' (yg) = limg 00 ¥/ (2, E), the assertion is proved. Hence f
is u-integrable and we have proven that

/Efd;z=k1g2°/;fnkdp for E€Y .

THEOREM 34 (1) Let (f,) be a sequence of u-integrable function
which converges to f a.e on S with respect to p,

(2) let |f.| < g for eachn and g : § = X be a y p-integrable
function,

(3) for every € > O there emsts 6 > 0 such that | i ||, (E) < 8
tmplies

I] gd(y'p)l <e fory € o.

Then f is p-integrable whenever Y is sequentially complete and |, pfdu=
limy oo [ fadp uniformly for E€ 5.
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PROOF We first show that (f fndp) is Cauchy uniformly with re-
spect to E € . For given € > 0, let ¢(E) = [ gdp, F,={s € §:
|f — fz| > €} and E, = U2 Fi. Then (F,) is a decreasing sequence
of set F, ™\, 0.

By applying the dominated convergence theorem for operator-valued
measure, [ is y u-integrable and for each n, we see that f is y'u-

integrable and [ fd(y'p) = limpoo [ fad(y'p).
Now for ¢ € Q,

|- fawn)

< sup

sup /;3 B (f = fa)d(¥ 1)

< el Bllg (BN ES)+2sup [ g1l diy/ sl
¥y <qJENE,

=cl Bl (S)+21 &g (En)-

[ =
ENEe

-+ sup
y'<q

Thus,

o [ puta= [ o)

<2 | filly (8)+ 2 sup j \gld]y'u] + 2 sup / lgldly
y'<gJENE, y'<g JENE,,

<2|Ellg(S)+2] g (Ea)+2¢ g (Em)

for alln,m and E € 3. So the sequence ({ frdu) is Cauchy uniformly
with respect to E € >_. Since Y is sequentially complete, there is an
element yz in Y such that 3/ (yg) = 3/ (limnoeo [ fadp) = [¢ fd(¥' i)
for £ € 3 . Hence f is p-integrable and lim, ;00 f E fndp = f E fdu.

DEFINITION 3.5 ([2]). A function f : § — X is said to be u-

integrable if there exists an X-valued sequence (f,,) of simple functions
such that

(1) fu = f peae,
(2) given € > 0, there exists § = d(e) > 0 such that || p || (E) < 8
for E € ) implies ¢(f fodp) <€ for alln € N.
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THEOREM 3.6. Let || i |l be finite and f, — [ p-a.e.. Let g :
S — X be y p-integrable such that |fu| < g, n=1,2,--+, |fn—g| <
M, {f — gl £ M for some constant M. If f is y' u-integrable, then
Jg fad(y' 1) converges to [, fd(y' u) unaformly fory €Y', E€ 3. If
Y is sequentially complete, then f is p-integrable.

PROOF. Let E, = U;.”zl{s €S\ 12 gt } Then (E,)

is a decreasing sequence of sets with E,, \, § and so, given € > 0, there
exits a positive integer N = N(¢) such that || ZZ || (En) < g7 for all
n > N and all s € SN E, and ¢(f, — f) = 0 uniformly on §nN Ef.
Then

- f«n)d(y'u)‘ <

i e | +| [ (- £ 1)

€ . ~
< W(En ES)+2M || i [lq (En)

<E+e_e
4 4 2

Since || /i g (En) = 0 as n — oo, we see that q(f,(f — f2)d(y/' 1))

converges to 0 uniformly for 3/ € Y/ and F € 3.
Thus now for given € > 0,

q( /;3 fnd(y'p) — /E fmd(y’u))

<ell Bllg (ENER) +2M) + €(l| B llq (BN EL,) +2M),

foralln,m> Nand Ec¥..
So the sequence ( [, f.du) is Cauchy uniformly with respect to E €

By applying the dominated convergence theorem, we see that f is
Y p-integrable and

Jm [ fodt/n) - [ tiwu) o EEY.
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Since Y is sequentially complete, there exists an element yg in Y
such that ¥/ (yg) = o/ (lioseo [ fadh) = [ fd(y/ps). Hence f is p-
integrable and [ fdp = Yimnoeo f5 frdi

4. The strong integrals

In this section we shall assume that y is strongly bounded, that is,
for every sequence of pairwise disjoint sets {Ay) in Y, Hip 00 #{Ar) =
0. Then every || p |4 is strongly bounded for ¢ € Q.

To prove this, note that

|l ullg (A) = sup |y’ a2 (A)

= 3“1:{ sup (3/'p(B) +y'1(A - B))}

= sup sup{y w{(B) +y'p(A - B)}
BCAy'<q

< sup{g(u(B)) + q(u(A — B))}
BCA

< 2 sup ¢(p(B)).
BCA

If (A,) is a sequence of pairwise disjoint sets in Y, and assume, by
contradiction, that there exists ¢’ € @ such that || p g (As) 7 0, then
there exists ¢y > 0 such that for all k there is an ng > k, k € N with
SUP4,, c A, q'u(An,) > €o; thus, for every k there exists B,, C Ap,
such that ¢'(1(By,)) > supy, ca, ¢ (1(4n.)) — 3 > %

Since the A, s are paxrmse disjoint, so are the Bnk s, but cannot
be (B, ) — 0, which is contradiction.

DEFINITION 4.1. For any simple function f = Y .., z;xE, and for
E €} wedefine [, fdu =73 z,u(ENE;);afunction f: 5 — X is
said to be strongly p-integrable if there exists a sequence ( f,) of simple
functions such that

(1) forevery e >0and g€ @, [[Z [l {|f — ful > €}) = 6,

(2) the sequence (fg fndy) converges in Y.
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Then we put

@~ [ pan=ltim [ fud B )

Note that, trivially, if f is simple, the p-integrable and the strong u-
integrable coincide.

THEOREM 4 2. Let (fn) and (g.) be defining sequences for f such
that they both satisfy (1) and (2) of Definition 4.1, then

(1) limp 400 fE Frdp = lim, o0 fE gndp

(2) iMoo [ frdp = (s) — [ fdp is uniform unth respect to E €

(;;?2) (s) — [5 fdp < p in the sense of the || - ||q-variation for every
q <.

PROOF. Let h,, = g, — fn. It is evident that (h,) converges to 0 in ||
+ |lq-variation for every g € Q. Also there exists yp = liMp_00 f Rndi
for E € 3. Let € > 0 be fixed, and define A, = {s € S : |h,| > €}
and B, = U2 Ar. So for y € Y’ there exists a positive integer ng
such that |¢/u|(B,) < € for all n > ng. Since h,’s are simple, they
are bounded, say |h,| < M,, where M,, = sup g |hn(s){; Then for
Eey,

q( / hndu) < q( / hndu) + q( / hndﬂ)
E EnAg ENAn,

= sup / |hnldly’ p| + sup / |hnldly’ 1]
¥'<q JENAg y'<g JENA,

<e sup W ul(EN ALY + Muly ul(EN Ag)
¥ %q
<e(lully (ENAZ)+M,) for E€Y .

By Vitali-Hahn-Saks Theorem [3], the [ hndp are || p |o-contimious
uniformly with respect to n and lim,— 00 [ g, fndu=0for E € 3.
Thus ¢g(yr) = 0; since Y is Hausdorff, and ¢ € @Q is arbitrary, this
yvields yz = 0. Moreover, in similar way, we can show that if the
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sequence ( f,,) of simple functions converges to f, then for every ¢ € Q,
95 frdi) <[} i g (E) uniformly with respect to n, that is, for every
q € Q, and € > 0 there exists a § > 0 such that | z ||¢ () < é implies
that q(f fadp) < € for n =1,2,-.., and thus g[(s) — [ fdp} < € for
g€ Q, ie.,

q((s)*[Efdﬂ) <7l (B) forqeQ EeY..

So, ¢( f fdp) <|| ¢ |lq (E) for n = 1,2,... yields that the limit in (*)
is uniform. In fact, since || i {|g ({|fn — f| > €}) — 0 as n — oo, there
exists-a 6 > O such that || i llg ({|[fa —fl> e} NE)<dfor E €},
and hence q[(s) = f{;_; sqne(fa ~ )] <eforn=1,2,.--.

To prove (3), since

q(<s) - /{ P Hin)
< sup ((s) - [t f)du)({lfn >

y'<q

<|l (s) - ] (o= Ddp llg (1 — I > )

<elzllq (S)
for E€ )", hence, forn=1,2,--- and E€ Y,

Q((S) - [E (fn — f)d#) < q((s) - /{ Ifn—f1>e}ﬂE( fn — f)dp,)

+ q((S) - f (frn— f)du)
{|fn—fi>e}nE
<e+el iy (S).

Finally, since (s) — f( y fdp = lim,,*,oof( y fadp, and o(fg frdp) is ||
# ||g~continuous, uniformly with respect to n, we find that given € > 0
there exists a § > 0 such that ||  ||q (E) < & yields ¢(f; fndp) < 5,
n=1,2,... and ¢((s) — [ fdp) < 5; thus if suppc g q((s) — [ fdp) <
%, then || (s) — [ fdu lg< €, and this completes the proof.
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