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NEW BOUNDS FOR A PERTURBED
GENERALIZED TAYLOR’S FORMULA

P CERONE AND S S DRAGOMIR

ABSTRACT A generalised Taylor series with integral remainder in-
volving a convex combination of the end points of the interval under
consideration 1s imnvestigated Perturbed generalised Taylor series are
bounded m terms of Lebesgue p-norms on [a,d)2 for fa : [, - R

with fa(ts) = f(t) - f(s).

1. Introduction

In the recent paper [1], Mati¢, Pedarié¢ and Ujevié¢ proved the follow-
ing generalised Taylor’s formula.

THEOREM 1 Let {P,}nen be a harmonic sequence of polynomials,
that is

(1.1) PLty=Po_1(t), Po(t) =1,teR, neN, n>1.

Further, let I C R be a closed imterval anda e I. If f: T — R 15 any

function such that for some n € N, f(® 15 absolutely continuous, then
foranyx el

(1.2)
f(@) = f(@) + Y (-1 [Pi(a) f*) (&) ~ Pe(a) f®)(a)] + Ru(f;0,2),

k=1

Received March 4, 2000 Revised Setember 25, 2001.
2000 Mathematics Subject Classification Primary 26D15; Secondary 41A55
Key words and phrases: generalised Taylor series, difference norm bounds.



198 P. CERONE AND 8. S. DRAGOMIR

where

Rn(f;a,7) = (-1)" / ) P () f D (t)dt.

They also pointed out the following bounds for the remainder R, (f;-, ).

COROLLARY 1 With the above assumptions, we have the estima-
tions

(1.3) |Ra(f;a,2)]
||Pn||°°||f("+1)||1 provided f(“+1) € Li|a,z],

< HPn“q"f(nH)"p. prowvided f(n+1) € Lp[a,m], p>1, ,l,'f' é =1,
IPall | f™FD oo provided f(*+Y) € Loola, ],

where z 2 a and || - ||, (1 < s < 00) are the usual s—Lebesgue norms.
That 1s,
x :
o= ([ latopar)” s € oo
a

l9llos := ess sup |g(t)]-

t€fa,x

and

In this paper, the above results are evaluated for a specific poly-
nomial P,(t) which involves a convex combination of the end points.
Further, a perturbed generalised Taylor’s formula is developed from
which bounds are obtained in terms of Lebesgue p—norms on {a,b]? for
fa : [a,b]? = R with fa{t,s) = f(t) — f(s). The results presented are
an improvement on the pre-Griiss inequalities in {1} both in terms of
the sharpness of the bounds and also in terms of the wider variety of
norms. The results are applied to the polynomial involving a convex
combination of the end points.

2. A Polynomial Involving a Convex Combination of the End Point:

If we choose

(P) Po(t) = [t~ (o + (1= Na)]"
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then, by (1.2), we obtain the representation
f@) f(a)+Z( U le = 0 i o)
(21) - f“"(a)]

+ (—"ni,)i f x[t ~(Aa+ (1= X=z)|* Fer) ()t

which generalises the followmg result from [1] (obtained for A = })
(2.2)

" (-0 (@ - o)* 1 ok
1@ = @+ Y CE T w0 @) 4 (1) 0 o)
k=1

2k k!
+ GO p_ ot nf(n+1) (t) dt
nl J, 2 '

If we apply Corollary 1 to the polynomial defined by (P), we can state
the following theorem.

THEOREM 2 Assume that f is as imn Theorem 1. Then we have the
inequality

(23) |f (@)~ f(a)

o E 2 ) ) (4 (1 (1 - 2 19 )]

k=1

'#(w—a) 2+ =3]" 1Dy i f‘"“>€L1[a z);

—L  (z—a)"te [(1 — At )\nq+1] ; [ fm D,
n’(nq—«l—l)q
if fl) Lpla,z}, p > 1, 1_1’ + % —

G:%T)T (IL‘ — a)‘n-f-l |:(1 _ /\)'n-i-l + An-{-l] l|f(n+1)“oo

\Cif fOTY € Leola, 2).

A
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ProoF. We have

i n
|Palloc = = sup [t —(Aa+(1—A)z)]
7 tela,x]

;, Lsup {t—-()«a+(1—)\)x)[]n

€la,x)
= u—'[max{/\a +{1-Nz—a,z—{(Aa+(1~2A) z)}"

! (z — a) [max{l — A, A}"

nl
=i’(9:—a)" [-2-+‘,\—E]n
1

2
1 A1
(2.4 Pl = 3o - [ 3+ A~ 3

and so

2

] n
and the first inequality in (2.3) is proved.
In addition, as

1
1

-1 [/S}t—(/\a-i-(l—,\)a:)]m’dt]q

Aa+(1-A)x
[/ (Ma+(1—-Xz—t)y“dt

_ 1
/ (t— (Aa + (1 - X)z))™ dtr
Aa+{1—A)z

1 (1-A)(z—a) Alx—a) %
= — ] u™9du + / v™dy
nt | Jfo 0

|- 1q

and so

1 _ yw\netl ng+1 ]9
(28) NPl = % (z —a)"Ts [(1 AT+ X ]

o

?

ng+1
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the second inequality in (2.3) is also proved.

For ¢ = 1, the assumptions are obvious and the theorem is thus
proved.

Taking into account the fact that the mappings fi (A) = [% + |A — %Hn ,

R = [ =0 x ] ana gy (3) = (=) A ane

convex and symmetrical about %, we may deduce that

inf f,(A) =71 (%) i=1,2,3

A€[0,1}

and then, the best inequality we can get from {2.3) is embodied in the
following corollary.

COROLLARY 2. Assume that [ is as in Theoremn 1. Then we have
the inequality

n k
(26) |£2)~ £ (@)~ 32 (14 B2 [0 ) 4 (C)f+ 58 ()]
k=1 '

(o (= a)" SOV

1 — g\ || plnt1)
| Toaenm T,

if f*Y € Lyla,2], p> 1, %+§=1;

| oy @ — )" || D|| o of fD € Lo e, 2]

ProOF Taking A = 3 in (2.3) readily produces the stated result

(2.6).
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COROLLARY 3 Let f have the properties stated in Theorem 2. Then
the tnequality

_ _N~—a)®
F@) - a3 pw ()
k=1 ’

¢ Sw;a!" |If(n+1)”1 s f(‘n+1) c I{1 [a, :1:] ;

ﬁ_J_,.x ” (n+1)" (n+1} €Ly la,2],
<{ mni(ng+1)9

p>l,-xl;+é-——1;

| ot fee |, fD € Log [a,a]

holds.

PROOF Taking A = 0 recaptures the classical Taylor series expan-
sion above in terms of the L, [a,z], p > 1 Lebesgue norms (see for
example, Dragomir [4]).

If we apply Theorem 2 for f (z) = . g (u) du and then choose x = b,
we obtain the following trapezoid like inequality.

THEOREM 3 Assume that the mapping g : [a,b] — R is such that
g1 is absolutely continuous on [a,b]. Then we have the inequality

k+1 k
/ g (t) dt — Z ( 1) (:L‘ )

k=1

2.7)

x [+ (b) + (—1)’°+l (1= 2* g% ()|
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(o (0= [F+[A= 31" g™l
1
_ n+ _ ywnratl ng+1]9 (n)
oL [(1 S

f g™ e Lylab],p>1, L+1=1;

gy (0= o)™ (L= )™ A g
L of ¢ € Lo [a, ).

The following corollary contans the best inequality we may obtain
from (2.7).

COROLLARY 4. With the assumptions as in Theorem 3, we have the
inequality:

e[ (t)dt—z( 1yt G [y ) 4 (1) g )

(o (0= a)" l9™]],5

_ '""‘" (n) . (n)
et 0@ T e, it g™ € Lyfasb,

IA

1,1 1.
P> l, P + g = 1,
| gy (00— a)" g™, if g™ € Loo [a,2].

REMARK 1 The results in Theorem 3 and Corollary 4 can also be
oblained from the 3 point quadrature formulae developed in the recent
paper [3] by Cerone and Dragomar. We omit the detals. Further,
taking A = 0 n Theorem 3 ques a representation of an integral in
terms of a polynomial expansion about the end point a.
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3. Some Preliminary Results Involving Lebesgue Norms on [a, b]2

For f € L, {a,b] (p € [1,00]) we can define the functional

1

(3.) I = ( / [ —f(s);f’dws) P

and for f € L [a,b] , we can define

(3.2) Ifll: =ess sup |f(t)~ f(s)]

(t,s)G{a,bP

If we consider fa : [a,b] = R,

(3.3) fa(t,s)=f(t)— f(s),
then, obviously
(3.4) Aty = llfall,, » €00,

where,||-{|,, are the usual Lebesque p-norms on la, b]z.
Using the properties of the Lebesque p-norms, we may deduce the
following semi-norm properties for ||-||$ :

@ |If1l5 > 0 for f € Ly[a,b] and ||f]|5 = O implies that f =c (¢
is a constant) a.e. in {a, b):
@) Nf +glly <liflly +lally i f,9 € Lpfa,b]:
(iii) Nl = 1o 11 £11 -
We note that if p = 2, then,

b b 3
17l = (fa /a f(t)*f(3)2dtds)

5 3
=2 [(b- a) |11}~ / 1® dt)z}

If f: {a,b] - R is absolutely continuous on {e, 5], then we can point
out the following bounds for || f |}$‘ in terms of || f'| ..
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THEOREM 4 Assume that f : [a,b] — R 15 absolutely continuous
on {a,bl.
(i) If p € [1,00) then we have the inequality
27 (b—a .
(B ey f e Lelad);

((p+1)(p+2)]P

s} ereal®s oy o pe o,
35 Wy <4 rmirams e |

a>1, s +5=1
2 .
L@ —a)F [, if f'€ Lila,b].
(if) If p = oo, then we have the wmequality
(3.6)
(b—a)llf'll, if f' € Loo[a,b];

e <8 @—a)# 1, if '€ Lalodl, a>1, 2+ =1
171, -

PRrROOF. As f : [¢,b] — R is absolutely continuous , then f(t) —
= [7 f'(u)du for all ¢, s € [a,b], and then

(3.7  |f(®) - f(s)
{t=sllif'flc if f' € Loola,b];
t L .
- ! It — sl || f'll,, if f' € Lala,b,
[ #wa < a1, tiyo1
171 if f' € Lile,b].
and so for p € [1, 00}, we may write
1O~ P
i —sPIfIe,  if f' € Loo [a,];
<q lt—slFIfIR, i f e Lalad), a>1, L+
I3 if f'€ Ly{a,b].

i
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and then from (3.3), (3.4)

(N oo U2 f2 1t — slPdtds)?  if f € Loo la, bl
W e (2 21t — )% dtds)s  if f' € Lo o, b

a > 1, ﬁ 'r--;; =1;
LI (2 S dtds)» if f'€Lylo,b:.

Further, since

(/: [ ) - Ub (/t o - s )t %

([l

25 (b—a)l*5

o+ 1)(p+2)]5
(/ b / - slﬁdtds)%z @6 -t
a Ja [(p+ B)(p + 28)}

(/:]:dtds)%=(bwc)%,

we obtain, from (3.8), the stated result (3.5).
Using (3.7) we have (for p = oo} that

(3.8) [I£11S <

giving

and

[ 1/'lleoess sup [t —s]
(t,s)é[a,b]z

(6~ a)|| /1]
Fay . . o0
oo S W5 s sup o= of? = { - o)} /'l
s 0,

Ll
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and the inequality {3.6) is also proved.

4. New Bounds for a Perturbed Generalised Taylor’s Formula

Using the following pre-Griiss inequality (see{l, Lemma 1])

LEMMA 1 Leta < z and let g,h : [a,z] — R be two integrable
functions. If

(4.1) d<g(t) <® for ae. te€a,z|,
then
(42) T(g, )| < 5(@ ~ H)VTTh, ),

where T{-,-) is the Chebydhev functional on [a,z], that is we recall

(4.3) T(g,h) = m—}a /a " Oh(t)dt — (x%a)g /a " o)t /a " Byt

Matié, Pecarié and Ujevié proved the following generalised Taylor’s
formula (see [1, Theorem 3}).

THEOREM 5 Let {P,, }nen be a harmonic sequence of polynomuals.
Let I C R be closed interval and a € I. Suppose that f : I — R is such
that f(*) is absolutely continuous. Then for any x € I we have the
generalised Taylor’s perturbed formula

(44) )
f(@) =Ta(f;0,2) + (= 1) [Pari(@) ~ Pasr(0)][f; 6, 2] + Gn(f; 0, 2),

where

45) Talfi,2) = f(a) + Y _(—1)*Pu(z)f*)(2) - Pi(a) f¥) (a)]

k=1
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and

[ a g = L) 1)

r—a

For x > a, the remainder é( f;a,x) satisfies the estimate

(48)  |Calfia,2)| < 5= VT (Pa, P)[D(@) = (@)},

where

(47) T(z): sup ftD() < oo, y(z):= inf fP+tY(s) > —co.
t€fa,z] t€la,z]

In the recent paper [2], by the use of the following representation

(48) Gn(f;a,z)
_ __w_zgl_)';) / ) ] “(Palt) - Pn(s))(f<“+1> (t) - f<"+1>(s))dtds,

S.S. Dragomir improved the inequality (4.6) as follows
(4.9)

1
~ 1 2 212
|Gr{f;a,2)} < (x—a)/T(Py, P,) [m ”f{n+1)H2_({f(n),a,,x]) ]
provided that f®) € Ly{a,z].
If f(*) € Leola,x] C La[a,z](and the inclusion is strict), then indeed

1
z—a

£ (179, 0,2)) < 1 (0() — 1))

and so (4.9) is a refinement of (4.6).

In this paper, we point out some other bounds for the remainder
G(f;a,z) in terms of the seminorms ||P,,||;,l , Hf("H)Hf where p,q €
1, c<].

The following theorem holds.
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THEOREM 6 Let f: I — R be such that f™ is absolutely contin-
uous. Then for any x € I we have the representation ({.4) and for
x > a we have an estimate for the remainder given by:

(4.10)
¢ 1 . n
s~ RIS it 0D € Loolaal
~ 1 ) n
|G {f;a,2)| <X (—~——)-l|Pn||$|lf(n+l)1|3 if fotD ¢ Lyla,a);
Lz(x sy BRI it S € Lufaal
Moreover,
[f::)_(;z)] rhf (+2H| 00 if 0D € Loo [a,2];
m-—-a% P . n
s o | GEEaP a0 € Lo fa,al,

((p-+B)(p+208)/
a>1, ﬁ + % =1;

(@ = @) |25, i f0 € Lifoygl,
where p € [1,00} and

( (— )| fO Do i fOH € Lo [a,2];
(@ — )| f D), af  foD e Lola,a],
YL < ¢ 11
a>1l, —+==1;
a )
\ 1lf(n+2) Hl if f(n+2) € Ll [aal'] 3
(4.11)

[ 2%(:1; - a)l"‘%
(g +1)(g +2)}s
1217 < @)@ —a)7*s
(g +7)(g+ 2]
| (- a)7||Poci|ls if e L[e,2],

I Pr—1]]oo;

S|

. 1
“ n— 1“5 if '716>13 ’_}’_}_
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where q € [1,00) and
(z — @) Pa-1leo;
(412) RIS <{ (@—a)¥|Pacills i %,6>1,
I Pr—1ll1-

PROOF Use the representation (4.8) to get
.~ 1 T T
. <___ —
Cnttian)| <gmmg [ [ 18- P
| FOHD (g) — flntD) (s)l dtds.

It is obvious that if f**t1) € Ly, [a,x], then
M= [ [ 1P = Pl (0 - 0 (o) dtds

<ess sup |fOFD(¢) - ot (s) fx /x | Py (t) — Pp (s)| dtds

(t,9)€labf?
= 1Pt HF IS

Using Holder’s integral inequality for double integrals, we have

M< (/jf:]P,,, (t) — P, (s)l"dtds)%
A

= |2 s )8

Ft) gy — plotd) (s)j” dtds) ’

and, similarly,

M < [Pl £ 02

For the second part of the theorem, we apply Theorem 4 for flrtl)
and P,, taking into account the fact that P, (t)=F,_.(t).
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COROLLARY 5 Let I C R be a closed interval and a € I. Moreover,

suppose that f : I — R 1s such that f"™ is absolutely continuous. Then
forz € I and X € [0,1] we have

(4.13)

f (:B) . f ((L) _ Z(_l)k+1 (3} ;'0’)
k=1 '
x [A’f 1 () + (—1)*‘“ (1= X)* £ (a)]

A,
( Bi||fr 0 if fD) € Lo [a, 75
A
B2 it f0) e I [a,a]
p>1, %4—% = 1;
[ Bool f®HIif fH) € I [a, 2],

IA

where, for 1 < g < oo

n-1 l] n~1

bl,qL"Gi_)l)_' [% + I’\_ 2 ]

?

(:c—a)"“l"‘ [(1 A)(n—1)5+1+/\(n—l)6+k

(4.14) B, = ﬁ T n— 1) (n-1)6+1 ’
1 1 ’
’;'I‘g:l, ~vy8 > 1,

\ boo;qu_—nfz [(l - A)n + /\nl ]
with
1., 2 142,
byg =2 lw(z_a)ﬁf , 1<y<oo and
(4.15) {(g-+7)(g+27))¢

(a: a)__I
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and

.'.t—a)"' 1 1
o 3T A =3l
1
4.16) B = lj:c-«a! 1A=+ 5 (n-1)6+1 7 F 4 1
( ) g < (n 1)! [( ) (n_1)5+1 ] ;;4—3—1,7,5)1

L3R [ - " + ]

PROOF Rearranging identity (4.4) and taking the modulus gives
the remainder for the perturbed generalised Taylor series l(:‘ (fia,z)
bounded by expression (4.10). Taking P, (t) as given by (P) readily
produces the left hand side of (4.13).

Now for the bound. From (4.10) with P, (t) as given by (P), we
have |P.||> and |Py]|2 defined in terms of [|[Pa-y|s and [[Pa-1lly
in equations (4.11) and (4.12) which are as defined in (2.4) and (2.5)
respectively. Thus, substitution of (2.4) and (2.5) into {4.11) gives,
on utilizing (4.10), the first two inequalities in (4.13) with B, being
defined by (4.14) for 1 < ¢ < co. Substitution of (2.4) and (2.5) into

(4.12) gives, on substitution into (4.10), the last inequality in (4.13)
where B, is as given by (4.16).

COROLLARY 6 Let the assumptions of Corollary 5 hold. Then

the following inequality is valid. Namely, for f*+1) un the obvious
Lebesgue norm on e,z

(4.17) f(a:) - fla) - 2(_1)k+l_(_%)_}i[f(k)(x) + (_l)k+1f(k)(a)]
k=1 ’

—1)y+1
e e -2 @) - £(a)

B |l f> )4
B

< { Byl ftnt) Hﬁ‘,

Booll F DI,
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where, for 1 < g < oo,

f (x — a)n_l
SR sy ——)
27=1{n ~1)!
A
P - R LA
1=y Tl {(n-1)64+1)F(n—-1) ¥ 9
@—a)"
°9 gn-1p!
\ b ¢ are as defined by (4.15)

and
( (@—a)”" 1,

Boo= (m_a)nml s 1
i n—1)8+1]3 (n—1)1" 7

+35=1 1.6>1;

Sl

L (x_a)n-l )

Ay

PROOF. Trivial. Taking A = § in Corollary 5 readily gives the
desired results.

REMARK 2 It should be re-emphasised here as stated after Theorem
2 that the sharpest bound that can be obtained by restricting A mn (4.13)
18 to take A = % That 13, the results of Corollary 6. Furthermore, for
n even it may be noticed from (4.17) that there 1s no perturbation in
the Taylor serses.

In addition, note that coarser bounds may be obtained by using the
results of Theorem { or 6 and so ||f(""‘l)|[: < K,z Hf("+2)Ha , where
p>landa>1lwithi+i=1land 1 +5=1

COROLLARY 7 Let I C R be a closed interval and a € I. Further,
suppose that f : I — R and is such that f("™ s absolutely continuous.
Then we have for f(*+1) in the obvious Lebesque norm on [a,x)
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n+1l

(4.18)|f (@) - f (@) - Z(ﬂ” 49 (a) 4 (-2 Gt ) @)

Bi{|£*0],
W T
Bg, || F 0|,

where, for 1 < g < o

-1

bl,q (n-l)' ;

B; =< p G Lil=1, ~6>1
q L PR NI IRTs S + 5

with b, o and be 4 as given by (4.15). Further,

W

1)1 >
Bl =4 (oot Liloq, 4,850
= 2 1)innas3’ 7B T ’

z—a
\ ¢ Tal

ProoF Taking A = 0 in Corollary 5 produces the results as stated
after some minor manipulation.

REMARK 3. The result (4.18) represents a perturbed Taylor series
expansion about a pownt & = a together wnth the evaluation of fn+1) (x)
tnvolved in the perturbation. The bounds are gquen wn terms of the
Lebesgue p-norms on |a, b]2 for fa : [a,b]2 ~» R where fa(t,s) =
F (@) — f(s), as introduced n the current work.
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