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Abstract. In this paper we introduce a new concept of positive orthant
dependence of multivariate stochastic processes. This concept is weaker than
the POD but it enjoys most of the properties and preservation results of the
POD. Some examples are presented.

1. Introduction

The theory of positive quadrant dependent(PQD) random vari-
ables and of its dual notion, negative quadrant dependent(NQD)
random variables was initiated by the seminal paper of Lehmann
(1966). After this a number of aspects of positive(negative) de-
pendence notions have been studied for several decades. Concepts
of this dependence have subsequently been extended to stochastic
processes in different directions by many authors. For a bibliog-
raphy of available results see Ebrahimi and Ramallingam(1989);
they are introduced some positive dependence concepts in terms
of the finite dimensional of the hitting times of the components
of a vector process. Most of the multivariate dependence intro-
duced in the literature are stronger than POD(NOD), so that one
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may face problems that one wishes to investigate a new weakly
positive(negative) dependen ce concept weaker than POD(NOD).

In this paper, we are concerned with weakly positive depen-
dence of system reliability for time interval [0,¢]. The reliability,
F(t), of a system(component) is the probability that the system
functions will preserve its characteristics within specified limits
during a specified time interval [0,t]. If a system failure is an
event in which at least one characteristic of the system shifts out-
side certain permissible limits, and if T is the time to failure, then

F(t) = P(T > t).

Suppose that the system reliability is determined by a finite
number of characteristics. For ¢ = 1,---,n, denote the value
of the ith characteristic at time ¢ by X;(t) and assume that it
is within permissible limits if X;(¢t) < a;, where ay,--- ,a, are
fixed and known values. For example, we may look upon a; as
the breaking threshold of total damages X;(t) by time ¢. Let the
random time T;(a;), at which the ith characteristic first crosses
its limit is given by

. inf{t € A | X;(t) > a;}
a:) = o if Xi(t) <a;forallte A, i=1,---,n

(1.1)

where the index set A is a subset of Ry = [0,inf). In this setting,
the failure time of the system, T, is given by

T=min(T1(a1),-~ ,Tn(an)). (12)
In view of (1.1} and (1.2),
F(t) = P(T1(a1) > t,- -+ , Tn(an) > t). (1.3)

Formulation of system reliability by means of (1.1)-(1.3) is rel-
evant to engineering disciplines relating to structural safety, vari-
ation of current and voltage, etc.

In general, it is possible to assess the system reliability F(t)
provided that we can jointly model X;(t),--- , X,(t) and we can
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also seek weakly probability inequalities for system reliability. To
obtain such weak probability inequalities, information about the
dependence structure of Ty(a1),- - ,Tn(a,) is essential.

For example if we know that for some s, -, s,

[ [ Perme > =)

Inl (1.4)
— | | P(Ti(a;) > z;))dzy - - -dzy >0
t==1
and . .
/ / (PN Ti(as) > x4)
0 0
(1.5)

n
- HP(T,-(a,-) > ;))dzy, - - -dzy > 0,
=1
then we can assess (1.4) and (1.5). Besides bounds information
about the dependence structure may bring forth new weakly prob-
ability inequalities for stochastic processes. These results are of
value as they help us to understand in what ways the hitting times
for dependence structures of hitting times can be inherited from
the corresponding processes. Furthermore, these results some-
times can tell us how to control the reliability of a system by
controlling its characteristics.

The importance of this paper lies in the fact that it is weaker
than positive orthant dependence and it enjoys most of the proper-
ties and theoretical results of weakly positive orthant dependence.
In particular, usefulness of weakly positive dependence in applied
probability, reliability, and statistical inference such as analysis of
variance, multivariate test of hypothesis, sequential testing is well
known. ‘

In Section 2 of this paper, some notations, properties, and defi-
nitions are presented. In Section 3, we prove some theorems which
not only clarify some properties of dependent process, but also
help us to identify weakly positive dependence structures both
among processes and their corresponding hitting times. Finally,
in Section 4, we give some examples of processes and hitting times.
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2. Notations and definitions

In this section we present definitions, notations, and properties
used throughout the paper. In what follows ’'increasing’ means
'non-decreasing’. Suppose that {X(t) = (X1(2),--- , Xa(t)) |t €
A} is an n-dimensional stochastic processes, where the index set
A is a subset of Ry = [0,00]. The state space of {X(t) | t € A}
is the cartesian product £ = F; x Fs X --- x E,,, which will be
a subset of n-dimensional Euclidean space R™. If the index set
Lambda is {0,1,2,---}, then

P(n; =1"Ti(a;) > t;) = P( max X;(ji) < as,i=1,---,n),

0<5:<[ti]
(2.1)
where [r] is the largest integer less than or equal to r.

We now present some concepts of positive and weakly posi-
tive dependence, X (t) is smaller than Y (¢) in the upper(lower)
orthant-convex(concave) order, associated, and stochastically in-
creasing for any n-dimensional stochastic process.

definitionDefinition 2.1[Ebrahimi and Ramallingam(1989)] The
stochastic processes X (t) is positive orthant dependent(POD) if

P(()=1"Ti(a;) > ;) > [[ = 1"P(Ti(a:) > t:)

and
P(=1"Ti(a;) < t:;) > [ = 1"P(Ti(a:) < 1)

i
forall @; and ¢;,1=1,--- ,n.

DEFINITION 2.2. The stochastic process { X (t)|t € A} is weakly
positive upper(lower) orthant dependent(WPUOD(WPLOD)) if
they satisfy the following both

/ / (P(Ni=1 X:(t:) > ai)

H P(X; (t ) > ai))day, - - -day > 0(WPUOD1)

i=1
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{/ /(Pm (t:) < as)

— H P(Xi(t:) < a;))day, - --day > 0}(WPLOD1)
i=1 :

and

/osl . /%(P(m;;lx,.(t,.) > a0)

- HP(X ) > a;))day, - - - da; > 0(WPUOD?2)

( /0 . /0 " PR Xi(t:) < )

- ln—[P(Xe(ti) < a;))day - - -day > OH(WPLOD?2)

i=1

foralla; € E;and t; € A, i =1,--- ,nand {X(¢)|t € A} is each
(univariate) WPUOD(WPLOD). For j = 1,2,--- ,n, we say that
a one-dimensional process X;(t) is WPUOD if for any 0 < s; <
<+ <8y, 8;€ANAanda; €F;,1=1,2,--- ,n,

/ / 1 X(si) > ai)

—HP i(si) > a;))day, ---da; >0

/Ozl /Ozn(P(n,'.;lXj(s,.) > ;)

- HP(Xj(si) > a;))day, ---day >0

=1

and WPLOD could be denoted like a Definition 2.2 by X ().

and
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Also, the hitting times T}(a1),- - ,Tn(a,) are WPUOD if

/:o .. ./oo(P(nLlT,.(a,.) > ;)

- HP (ai) > t;))dty - - - dt, > 0(WPUOD1)

and

/ / (P(O, Ti(as) > t:)

- H P(Ti(a;) > t;))dty, - - - dt; > O(WPUOD?2)
=1

for every a; € E; and t; € A, i =1,2,--- ,n, and WPLOD could
be defined like a Definition 2.2 by T;(a;), i = 1,--- ,n. Moreover,
X (t) is WPOD if they satisfy both WPUOD and WPLOD.

DEFINITION 2.3. The stochastic process {X(t)|t € Lambda}
is associated if

Cov(f(X;(t;),i=1,---,n),9(Xi(t:;),i=1,---,n)) >0

for all increasing real valued functions f and g such that the co-
variance exists and all ¢; € A,i = 1,---,n, and {X(¢t)|t € A} is
each(univariate) associated. For j = 1,2,--- ,n, we say that a one-
dimensional process X () is associated if 0 < 51, < 83 < -+ < 8y,

Cov(f(X;(si),t=1,--- ,n),g(Xj(si),‘z' =1,---,n)) >0.

Also, we say that the hitting times Ty(a1),- - ,Tn(a,) are associ-
ated if

Cov(f(T1(a1), -+, Tn(an)), 9(T1(a1), -+ , Tn(an))) 2 0

for all increasing real valued functions f and g for which the co-
variance exists. As a direct consequence of definitions 2.1, 2.2,
and 2.3 we have the following Remark 1.
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REMARK 1. X(t) is associated = E[[; = 1"fi(Xi(t:)) >
[1, = 1"Efi(Xi(t;)) for all increasing functions f;,z = 1,---,n
Lefirightarrow X (t) is POD Rightarrow X (t) is WPOD.

The following example shows that WPUOD does not imply
PUOD.

EXAMPLE 2. Consider a discrete-time process {X1(n) : n >}
such that X;(0), X;(1), and X;(2) have the following joint distri-
bution:

X1(2)
0 1 2
X (D X (1) X, (1)
0 1 2 0 1 2 0 1 2
0 |01 0 015 0 0 0 0 0 0
X0 1 0 0 0 03 015 005 0 0 0
2 |0 0 0 0 0 0 0 005 02

Table 1
It is easy to check that X;(n) is WPUOD1 but not PUOD.

DEFINITION 2.4. The stochastic process { X (¢)|t € A} is smaller
than {Y (¢) |t € A} in the upper(lower) orthat-convex(concave) or-
der X t) <uo—cz(lo——cv) Y( ) if

/ / 1 Xi(t) > ai)dan - - -day
< / f P(O™_ Yi(t:) > a5)dan ---day
Ty Tn

T Tn
{ / / PR Xi(t:) < a5)dan - -~ day
0

/ / P(O™_ Yi(t:) < as)dan ---day)

for alla; € E; and t; € A, i = 1,---,n and {X(¢)|t € A} is
each(univariate) smaller than Y(t) in the upper(lower) orthant-
convex(concave) order. For j = 1,---,n, we say that a one-
dimensional process X ;(t) is smaller than Y( ) in the upper(lower)
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orthant convex(concave) order if for any 0 < 87 < 82 < -+ <
sn,siGAand a; EEi,izl’... 1,

/ [ PORL X (s1) > ai)dan - day

/ / P(Ni_,Y;(si) > ai)day, - - -day

{/ / " PO, X (s:) < ai)day - das
0 0
z1 In
2/ / P(N_,Y;(s;) < ai)day, - - -day }
0 0

Also, the hitting time (T} (a1), -+ , Tn(ay)) is smaller than (S;(a,),
, Sp(an)) in the upper(lower) orthant convex(concave) order if

/ . / P(ﬂ;’___lTi(ai) > ti)dtn - dtl
81 Sn

{[ / i=1Ti(a:) < ti)dtn - -~ dty
/tl / T 1Sia;) < t;)dty, - - diy}

forevery a; € F;and t; € A,1=1,2,---,n

DEFINITION 2.5. The stochastic process { X (t)|t € A} is stocha-
stically increasing in {Y(¢) [t € A} if

E(f(Xi(t:),i=1,---,n)|Yi(t;) = bs,i=1,--- ,n)

is increasing in b1, by, -+ , b, and for every real valued increasing
function f. For j = 1,2, ---,n, we say that a one-dimensional
process X;(t) is stochastically increasing in {Y'(¢) |t € A} for any
0< s < < 8y, E(f(XJ(S,))IY;(S,) =b,i=1,--- ,n). AISO,
we say that the hitting times T3(a; ), - - ,Tn(an) are stochastically
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increasing in Tl(bl),' .- ,Tn(bn) if Ef(T,,(a,,)) IT,(b,) = ti,’i =
1,--- ,n)is increasing in t; € A and a;,b; € E; foralli=1,--- ,n.

Before introducing the main results, let us present some basic
properties of WPOD stochastic processes.

(Po) Any set of independent stochastic processes is WPOD.
(P;) Any subset of WPOD processes is WPOD.
(P2) The set consisting of a single process is WPOD.

(P3) The union of independent set of WPOD processes are
WPOD.

3. Theoretical Results

In this section we will assume that the index set A = {1,2,---}.

THEOREM 3.1(A). Let one-dimensional process {X;(t) |t € A}
be WPOD. Then T(a1),---,T(a,) are WPOD, here T(a;) =
inf{n|Xi(n) >a;},i=1,---,n

Proof. We will prove this theorem for n = 2. Suppose X (t) is
WPOD, then we need to show that for a; < as,

/ / P(N2 T(as) > t:)dtadts > / /m HP(T(a, > t)dt;.

2 ¢=1
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Now,
/ P(ﬂf=1T(a1) > t,-,T(az) > t2)dt2dt1
T2

= /°° /°° P(ma‘xogjs[h]Xl(j) <ay,
maxosjs[tz]Xl(j) < az)dtzdtl
= [ [ Px0) <055 < 0], Xi0) < an
[ta] +1 < j < [t2])I(t1 < t2)
+ P(Xl(_]) <a;,0<<j5< [tl])I(tl > tz)]dtzdt]_
> | °° / :O[P(Xl(j) < a1, 0legj < [L)P(X,(3) < az,
1] +1<j <[t2])I(t1 < t2)
+P Xl(_]) <a,0<3< [tl])I(tl > tz)]dtzdtl
/ / al) > tl)P(T(az) > tz)[(tl < tg)
( ) > tl)P(T(ag) > tz)I(tl > tz)]dtzdtl

= /El /zz nftyi];l1 P(T(a;) > t;)dt;,

where I is the usual indicator function.

THEOREM 3.2(B). Let one-dimensional process { X1(t) |t € A}
be WPOD and let f; be increasing functions, i = 1,2,--- ,n. Then
fi(T(a1)),- -, fn(T(an)) are WPOD, here T(a;) = inf{n|X,(n) >
a;} and W(a;) = inf{n| fi(X1(n)) > a;},i=1,--- ,n

Proof. We can obtain the result using a method similar to that
used in the proof of Theorem 3.1 (a).

In order to obtain Theorem 3.4 we need the following Lemma
3.2.

LEMMA 3.2. Let {X;(t)|t € A}, ---, {X,(t)|t € A} and
{Y1(t) |t € A}, -, {Ya(t) |tnA} be stochastic processes. Then
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the corresponding hitting times, Tn(an)) <yo-ca(lo—cv) (S1(a1),

+, Sa(an)) if and only if E([T;_, fi(Ti(a:)) < E(IT;-, fi(Si(as))
for all non negative(nonpositive) increasing convex(concave) func-

tions fy, -+, fn-

Proof. Use the similar method which Shaked and Shanthiku-
mar(1994) used proving their Theorem 5.A.14.

THEOREM 3.3. Suppose that {X(t)|t € A}, ---, {Xn(t)|t €
A} are stochastic processes and {Y1(t) |t € A}, ---, {Ya(t) |t € A}
have independent stochastic processes such that
P(mazo<j<pt Xi(j) < a;) = P(mazocj<Yi(j) < @) fori =1,
.-+, n. Then (Ty(a1), - - -, Tu(an)) are WPUODI1(WPLOD2 if and
only if (Tl(al); -+, Ta(an)) _>_uo-—c:c(lo—-cv) (Sl(al); Tty Sn(an))-

Proof. We only prove WPUODI case.

(=) Assume Ti(a1),- - ,Th(a,) are WPUODI1. From that as-
sumption we have

/ " PO, P(Ty(as) > t:)dty - - dts

> / . / H—i = 1"‘P(Ti(a.,;) > ti)dtn - dity
/ / P( max X;(j) < a;)dt, - -dt;

0<<t
iy <j<[ti]

:/z L HP(OE;?[(”Y;} §) < a3)dtn - dt1
/ fm HP(S(az > t,)dtn -

n "-—

z/ml /HP(n ' Si(as) > t)dty - -+ dty

Tn §=—1

Hence Tl(al) T (aﬂ)) Zuo—cx (Sl(al) aS (a'n))
(<) It follows from assumptions (Ti(a1), -+, Tn(@n)) Zuo—cz
(S1(@1), -+, Sn(an)) and that P(mazo<;<pXi(d) < a;)
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= P(mazo< <t Yi(J) < a:)
/ / (P(Nf=1Ti(a:) > ti) — [ [ P(Ti(as) > t))dtn - - dty
o1 =1

/zl /(P nSi(as) > )

- HP(Si(at-) > t;))dtn - -dt; = 0.

The zero follows from the assumption that {Yi(t)|¢t € A}, ---,
{Ya(t)|t € A} have independent stochastic processes. Hence
(T1(a1),- -+ ,Tn(an)) are WPUOD]. Similarly, we can prove
WPLOD?2 case.

From Lemma 3.2 and Theorem 3.3 we obtain the following
theorem.

THEOREM 3.4. Suppose that {Xi(t)|t € A},---, {Xn(t) |t €
A} are stochastic processes. Then the hitting times (T1(a1), -+ -,
T, (ay)) are WPUOD1(WPLOD2) if and only if E([] i fi(Ti(a;))
< (>) [1i-, E(fi(T;(a;)) for all nonnegative(nonpositive) increas-
ing convex (concave) functions fi,-- -, f.

Proof. Tt follows from this that Lemma 3.2 and Theorem 3.3.

In order to prove our next result we need to use the following
notations.

Let X = (Xy,---,Xx) be a k-dimensional vector with distri-
bution function F and the marginal distribution functions Fj, j =
1,2, - ,k. The dependence function of X (or of F') is defined by

Dp(uy, -+ ,ux) = P(Fj(Xj) <wuj,j=1,2,--- k). (3.1)

It is clear that Dp is the distribution function on [0,1]*, and it
has uniform marginal distributions if the Fys are continuous. The
marginal distributions together with the dependence function de-
termine F, since F(z1,- - ,zx) = Dp(Fi(z1), -, Fx(zk)). Fur-
thermore, a dependence function Dp is said to be an extreme de-
pendence function if all the marginals are non degenerative, and
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for each n > 1,
%(ulv" * ,'U.k) = DF('U.?, 1“2)7(“1:' e ,Uk) € [0’ 1]k

Hsing(1987) showed that Dp is extreme dependence function if
and only if

DF" (ula vt ,’LLk) - DF(ula toe ,Uk), (ula e ,"U.k) € [Oa 1]k (32)

It is clear that if (X, -+, Xik),1 < i < n are independent ran-
dom vectors all having a distribution of F', then F™ is the distri-
bution function of (mazi1<i<nXi1, - ,maz1<i<nXik) and hence
(3.2) is equivalent to Dpn(u1,- - ,ux) = P(Gj(mazi<i<nX;;) <
u;,j = 1,--- , k), where G; is the distribution function of
maxls,;SnX,’j which is FJF.

Now, we will define a concept for k-dimensional processes. For
a k-dimensional process {Xi(t)|t € A}, ---, {Xk(t)|t € A},
{W(t1, - ,te)|t1, - ,tx € A} is said to be a dependence func-
tion if for any ¢;,--- ,tx € A, W(ty,--- ,tx) = DFxl(tl)V"vxl(tk)’
where DFX1(t1),---.Xk(tk)(u1’.“ ,uk) = P(Fi(X,;(ti)) S Uq, r =
1,--- k), where Fi(z) = P(X;(t;) <us, i =1, k).

Then we obtain the following theorem.

THEOREM 3.5. Let (a) {X1(¢)|t € A},---, {Xk(t) |t € A} be
WPOD stochastic processes,

(b) Xi(t) is strictly stationary ¢ = 1,--- ,k (The process Y (t)
is said to be strictly stationary if for 0 < t; <ty < --- < t} and
h>0,(Y(ti+h), -, Y(te +h) =2 (Y(t1),--, Y (tk)),

(c) Dg,, ..., (w1, - ,ug) = Dr(uy, -+ ,ug) for allny,--- ,ng
€ {0,1,---} and (uj,--- ,ux) € [0,1]%, this condition is equiva-
lent to condition (3.2) for the case that X;s are not i.i.d, where
Dg,, .. o (U1, ug) = P(Gi(mazigjicn, Xis(§) Suiyi=1, -+
,k) and Dp(uy, -+ ,uk) = P(F;(Xi(0)) <wu;,2=1,--- k). Then
(T1(a1),- -+ , Tr(ax)) is WPOD.

Proof. Noting P(Ty(a1) > n1,- -+, Te(ak) > nk)
=P(mazi<j<n, X1(j) < a1, ,maT1<j<n, Xk(f) < ax) and the
fact that Gy, -+ , Gy are the distribution functions of
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mazTi<j<n, X1(J), -+, mari<j<n, Xx(j), we can obtain result of
this theorem.

In order to prove Theorem 3.7, we need the following Lemma
3.6.

LEMMA 3.6. Let (a) {Y(t) |t € A} be associated, (b) {X(t)|t €
A}, given Y (t), be conditionally associated, (c) X (t) is stochas-
tically increasing in Y (t). Then (X(t),Y(t)) is associated and
X (t) is associated. Furthermore, the corresponding hitting time
(T1(a), T2(b)) is associated and T} (a) is associated, here Tj(a) =
{n]| X (n) >=a}, To(b) = inf{n|Y(n) > a}.

Proof. 1t is enough to show that for any increasing functions f
and g and ny,ng € {0,1,2,---},
cov(f(X(n1),Y (n2)), 9(X(n1),Y(n2))) > 0.
Note that
cov(f(X(n1),Y(n2)), 9(X(n1),Y (n2)))
= E(cov((f(X(n1),Y(n2)),9(X(n1), Y (n2)))
+ cov(E(f(X (n1),Y (n2)) | Y (n2)), E(9(X (1), Y (n2)) | Y (n2)))
(3.3)
conditioned on Y (ny), Y (n2) is associated. Thus the first term
on the right side of (3.3) is nonnegative. By assumption, Y (¢)
is associated. Thus by increasing functions of associated sto-
chastic processes are associated, the covariance of the conditional
expectations in the second term is nonnegative. It follows that
cov(f(X (n1),Y(n2)), g(X(m1),Y (n2))) > 0, so that (X(2),Y(2))
is associated. Second, since (X (t),Y(t)) is associated by subset of
associated is associated X (t) is also associated. Furthermore, we

can show to similar method that for ny1,--- ,n1k, o1, ,Nom €
{01 17 2’ T }7 CO'U(f(X(nll), Ty 4X(nlk)7 Y("’?l)’ T Y(nzm))’
g(X(n11), -+, X(mk), Y(na1), ---, Y(nam)) > 0, and conse-
quently

cov(f(T1(a), T2(b)), 9(T1(a), T2(b))) > 0.
The inequality comes from the fact both f and g are increasing
functions of {X (n) |n € A} and {Y'(n) |n € A}. Thus (T1(a), T>(b))
is associated, since (T3(a),T2(b)) is associated (T7(a)) is also as-
sociated.
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THEOREM 3.7. Suppose {X(t)|t € A} and {Y(t) |t € A} sat-
isfy a linear regression relationship of the form X(t) = aY (¢) +
Z(t), where a > 0, Z(t) is an independent stochastic process of
Y (t) and Y (t) is WPOD. Then (X(t),Y (t)) is WPOD . Further-
more, the hitting time ((T1(a),T2(b)) is WPOD, here Ti(a) =
inf{n | X(n) > a}, To(b) = inf{n|Y(n) > b}.

Proof. Since X (t) = aY (t)+ Z(t) is stochastically increasing in
Z(t), X(t) given Z(t), is associated, by Lemma 3.6, (X(t),Y(t))
is associated. Thus by Remark 1 (X (¢),Y(t)) is WPOD. Further-
more, we can know that the corresponding hitting time
(T1(a), T2(b)) is WPOD and (T1(a)) is WPOD.

4. Examples

EXAMPLE 4.1. Consider a one-dimensional process {X;(t) |t €
A} such that X (¢) is a Brownian motion process (cf. Shaked and
Shanthikumar(1994)). Then T'(ay),---,T(an) are WPOD, here
T(a;) = inf{n|X1(n) > a;},i=1,---n

Proof. We will prove this result for WPUODI.

/ / P 1T az > t; )dt 'dtl
/ / ma$1<3<[tl]X1( ) < ay,- 3

maa:1<]<[t ]Xl( ) < an)d .- dtl

> / / HP mazi<;<X1(J) < ai)dt;
T1 Tn =1

:/ / ) > t;)dt;.
1 Tn §=1

The inequality comes from the fact that a Brownian motion pro-
cess has a continuous path and the results given by Pitt (1982)
about multivariate normal distribution.
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EXAMPLE 4.2. Consider the uniformly modulated model (see
Priestley(1988)) such that non-stationary process X (t) given by

X(t) = at)Y(t),t > 0,

where a(t) is a deterministic continuous function such that a(t) >
0 and Y (t) is nonnegative stationary process. If Y(¢) is WPOD,
we can know that X(t) is WPOD. Using the Theorem 3.1(b),
for f and g are two increasing functions, the corresponding hit-
ting times f1(T(a1)),- -, fa(T(as)) are WPOD, here T(a;) =
inf{n|X(n) >a},i=1,---,n.

ExAMPLE 4.3. Birth and death processes which start at 0 are
free of positive skips and satisfy conditions of (a) {X(¢)|t >}
be a strong Markov process with state space {0,1,2,---}, (b)
{X(0) = 0}, (¢) {X(t)|t >} is free of positive skips, that is the
sample paths cannot have positive jumps greater than 1. What is
more, Keilson(1971) has shown that the density function of T'(a)
is log-concave. It follows that any such birth and death process
is WPOD(WNOD) with itself. This fact leads to the following
application.

APPLICATION 4.4. Let {X(t)|t >} be a diffusion process on
the interval [0, y] which has a reflecting boundary at 0. Let { Ny (t)|¢
> 0} be a sequence of birth-death processes on {0,1,2,---} with
the assumption mug = 0 for its death rates. If ayNg(t) -% X(t),
then X (t) is WPOD(WNOD) and the corresponding hitting time
is WPOD(WNOD), T(a;) = inf{n|X(n) > a;},i=1,2--- ,n.

Proof. The result can be proved using the following facts. First,
Note X (t) is WPOD(WNOD) with itself. Second, hitting times
T(a) of X(t) have log-concave densities, being the limits (k — o)
of log-concave densities of hitting times of the processes o Ni(t)
(see Keilson(1971)).

EXAMPLE 4.5. Leslie(1969) has considered the waiting time
until the occurrence of a cluster of size £/, k > 2, in a homogeneous
Poisson process. Marshall and Shaked (1983) argue that such a
waiting time is the hitting time T(l‘%l) of a new better than used
(NBU) process Z(t) given in Example 2.4 of their paper. We
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can verify that Z(t) is WPOD(WNOD) with itself. Consequently,
given 2 < k; < -+ < ky,, a bound for the joint distribution of the
waiting times for clusters of sizes kq,--- , k, is provided by

/ / P(N2_; (k; —-)>:c,)d:cn -odzy

> g)/ / HP T(k; ——)>:L‘z)dz1

$n §=1

{/ / PO (ki ——) < z;)dzy - - - dzy 0
> S)/;1 /sn 11 %)Sxi)dxz’}
/ / 1 (ki — %) > 23)dxy - - - dry
/ / HP ) > x;)dx;
(4.2)

{/ / ) < x;)dz, - -dry

> S)[@...[@EP(T(@—%)gxi)da:i}

It should be noted that the terms in the left-hand side of the
inequality (4.1) can be computed by the similar methods of Leslie
(1969), Section 4.

EXAMPLE 4.6. Consider two different repair policies. The first
policy that we replace a failed unit with a new identical unit and
we denote the number of replacement up to time ¢ by N(t). The
second policy consists of repairing the unit to its condition just
prior to failure, that is, a minimal repair and we denote the num-
ber of minimal repairs up to time ¢ by W(t). Suppose the se-
quences {X, |n > 1}, {Y,|n > 1} denote the interarrival times
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for a renewal process N(t) and a minimal repair process W(t)
respectively. Then, it is clear that, X; = Y7,

P(X,>t|X;=Y,i=1,--- ,n—1)=F(t)

and

P(Yn>t|X1:Y1:y1’Yi:yiai:2""$n—1)
_Flt+y+ - +yn-1)

Fly1+- -+ yn-1)

Suppose F(t) is a new worse than used(NWU)(F(t) is said to be
NWU if F(z + y) >= F(z) F(y) for all z,y > 0), then we can
know that for any ny,ne € {1,2,---}, X1, -+, Xn1, Y1, -+, Yn2
are WPOD. Using this fact we can show that N(t) and W (t) are
WPOD. If T1(a) = inf{t | N(t) > a} and T3(b) = inf{W(¢) > 0},
then

oo pO0

P(Tl(a) > ty, Tz(b) > tz)dtzdtl
- / / P(N(t:) < a, W(ts) < b)dtadt,
T T2

> /::1)0 /z:o P(Tl(a) > tl)P(Tz(b) > tz)dtzdtl.

That is hitting times are WPOD.

EXAMPLE 4.7. Consider the following stress-strength model
for two systems. Let Z;(t), ¢ = 1,2, be the strength of system ¢
at time ¢. We will assume that the two systems receive shocks
from a common source. Using a cumulative damage shock model
(see Barlow and Proschan (1975)), we now let N(t) denote the
number of shocks occurring by time ¢ and U; are i.i.d. positive
random variables denoting the damage to either system due to the
ith shock (i = 1,2,---). Hence, the stress experienced by either
system at time ¢ is given by the process W (t) = Zfi(f) U;. Then,
we can show that W(t) is WPOD with itself. Assuming that
Zy(t) and Zy(t) are independent processes with non-increasing
sample paths and that Z;(t) and Z,(t) are independent of W (¢)
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and X(t) = W(t) — Z1(t) and Y (¢) = W(t) — Zz(t), we obtain
using Theorem 3.7 that the bivariate processes {(X(¢),Y(¢)) |t €
{0,1,---}} is WPOD processes. Further more, the corresponding
hitting times Tj(a) and T5(b) are WPOD.

ExaMPLE 4.8. Consider a simple form of an econometrical
model of investment and capital gain in Theorem 3.7. Let {X (¢)|¢
€ A} and {Y(t)|t € A} denote the investment and capital gain
at time ¢, respectively. The model is

Y(t) = aX(t) + Zo(t)
X(t)=Y(t-1)+ Z:(1),

where a > 0, Z;(f) and Z3(t) are both stochastic processes and
(Z1(t), Z2(t)) are a sequence of independent random vectors. Then
we can write that

X(n) = Z a7, (i) + }3 a1 7,(4)
X(0) = Z(0) ]

and we can obtain {X(n)|n € {0,1,2,---}} which is WPOD and
we can write that as

Y(n) =Y a" " 1Z1()) + ) a" T 25(3)
=0 =0
Y (0) = Z(0),

and we can know that {Y(n)|n € {0,1,2,---}} is WPOD. Thus
the processes {X(n)|n € {0,1,2,---}} and

{Y(n)|n € {0,1,2,---}} are WPOD. Furthermore, the corre-
sponding hitting time (7}(a), T2(b))is WPOD.
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