THE SET OF ATTACHED PRIME IDEALS OF LOCAL COHOMOLOGY

S. RASOULYAR

Faculty of Mathematical Sciences and Computer Engineering,
University For Teacher Education,
599 Taleghani Avenue, Tehran, 15614, Iran.

Abstract. In [2, 7.3.2], the set of attached prime ideals of local cohomology module $H^n_{\mathfrak{m}}(M)$ were calculated, where (A,\mathfrak{m}) be Noetherian local ring, M finite A-module and $\dim_A(M) = n$, and also in the special case in which furthermore A is a homomorphic image of a Gornestien local ring (A',\mathfrak{m}') (see [2, 11.3.6]). In this paper, we shall obtain this set, by another way in this special case.

Throught this paper, A denotes a (non-trival) commutative Noetherian ring with identity. We use \mathbb{N} (resp. \mathbb{N}_0) to denote the set of positive (resp. non-negative) integers.

DEFINITION 1. Let $M \neq 0$ be a finite A-module. Then $\operatorname{grade}_A(M) = \min\{i \in \mathbb{N}_0 : \operatorname{Ext}_A^i(M,A) \neq 0\}$ (the $\operatorname{grade}_A(M)$ of the zero submodule is infinity). (see [3, 1.2.5]). It follows from [3, 1.2.10(e)] that $\operatorname{grade}_A(M) = \operatorname{grade}(\operatorname{Ann}_A(M), A)$.

COROLLARY 2. Let (A, \mathfrak{m}) be a cohen-Macaulay local ring, and $M \neq 0$ a finite A-module. Then $\dim_A(M) = \dim A - \operatorname{grade}_A(M)$.

Proof. By [4, 17.4], we have

$$\dim A = height(\operatorname{Ann}_{A}(M)) + \dim \frac{A}{\operatorname{Ann}_{A}(M)}$$

$$= \operatorname{grade}_{A}(M) + \dim \frac{A}{\operatorname{Ann}_{A}(M)}$$

$$= \operatorname{grade}_{A}(M) + \dim_{A}(M)$$

Received February 12, 2001.

1991 AMS Subject Classification: 13D45, 13E05, 13H10.

Key words and phrases: Attached prime, Local cohomology, Gorenstien ring.

PROPOSITION 3. (See [3, 1.2.4]). Let M, N be A-modules, and $\underline{x} = x_1, \ldots, x_n$ a weak M-sequence in $Ann_A(N)$. Then

$$\operatorname{Ext}_A^n(N,M) \simeq \operatorname{Hom}_A(N,\frac{M}{\underline{x}M}).$$

PROPOSITION 4. (See [2, 11.2.6]) Let (A, \mathfrak{m}) be a Noetherian local ring which is a homomorphic image of a Gorenstein local ring (A', \mathfrak{m}') of dimension n'. Let $f: A' \longrightarrow A$ be a surjective homomorphism. Set $E:=E_A(\frac{A}{\mathfrak{m}})$ and $D:=\operatorname{Hom}_A(-,E)$. Then for each finite A-module M

$$H^i_{\mathfrak{m}}(M) \simeq D(\operatorname{Ext}^{n'-i}_{A'}(M,A'))$$
 for all $i \in \mathbb{N}_0$.

PROPOSITION 5. Let (A, \mathfrak{m}) a local ring which is a homomorphic image of a Goerenstein local ring (A', \mathfrak{m}') of dimension n', and M finite A-module. Then $H^{\dim_A(M)}_{\mathfrak{m}}(M) \neq 0$.

Proof. Let $s' = \operatorname{grade}_{A'}(M)$. Then $H^{\dim_A(M)}_{\mathfrak{m}}(M)$ = $H^{\dim_{A'}(M)}_{\mathfrak{m}}(M) = H^{\dim_{A'}(M)}_{\mathfrak{m}}(M) = H^{n'-s'}_{\mathfrak{m}}(M)$. Suppose that $H^{\dim_A(M)}_{\mathfrak{m}}(M) = 0$. Then by proposition 4, $D(\operatorname{Ext}_{A'}^{s'}(M,A')) = 0$. It follows that $\operatorname{Ext}_{A'}^{s'}(M,A') = 0$, which is a contradiction. Therefore $H^{\dim_A(M)}_{\mathfrak{m}}(M) \neq 0$.

PROPOSITION 6.. (See [2, Corollary 10.2.20]) Let (A, \mathfrak{m}) be a local ring (but not necessarily complete). Let M be a Noetherian A-module. Then $\operatorname{Att}_A(D(M)) = \operatorname{Ass}_A(M)$, where for any A-module N, $\operatorname{Att}_A(N)$ is the set of attached prime ideals of N.

PROPOSITION 7. (See [1, Ch. IV, Sec.1, Prop.10]. Let M be a finite A-module and N an A-module. Then

$$\operatorname{Ass}_A(\operatorname{Hom}_A(M,N)) = \operatorname{Supp}_A(M) \cap \operatorname{Ass}_A(N).$$

Let $f: A \longrightarrow B$ be a surjective homomorphism of Noetherian rings and L be a finite A-module. Let for each $\mathfrak{p} \in \operatorname{Spec}(A)$ ideal $\mathfrak{p} B$ be the extension ideal $\mathfrak{p} to B$. Then $\operatorname{Ass}_B(M) = \{\mathfrak{p} B : \mathfrak{p} \in \operatorname{Ass}_A(L)\}$ (see [4, Ex. 6.7]).

The main purpose of this note is proved in the following theorem.

THEOREM 8. Let (A, \mathfrak{m}) be a local ring which is a homomorphic image of a Gorenstien local ring (A', \mathfrak{m}') of dimension n' and $M \neq 0$ a finite A-module. Let $f: A' \longrightarrow A$ be a surjective homomorphism. Then $H^{\dim_A(M)}_{\mathfrak{m}}(M) \neq 0$ and

$$\begin{split} \operatorname{Att}_{A}(H^{\dim_{A}(M)}_{\mathfrak{m}}(M)) \\ &= \left\{ \mathfrak{p}'A : \mathfrak{p}' \in \operatorname{Supp}_{A'}(M) \cap \operatorname{Ass}_{A'}(\frac{A'}{(x'_{1}, \dots, x'_{s'})A'}) \right\} \\ &= \left\{ \mathfrak{p} \in \operatorname{Ass}_{A}(M) : \dim \frac{A}{\mathfrak{p}} = \dim_{A}(M) \right\} \end{split}$$

where $s' = \operatorname{grade}_{A'}(M)$ and $x'_1, \ldots, x'_{s'}$ is a maximal A'-sequence in $\operatorname{Ann}_{A'}(M)$ and $\operatorname{Att}_A(H^{\dim_A(M)}_{\mathfrak{m}}(M))$ is independent of the choice of maximal A'-sequence in $\operatorname{Ann}_{A'}(M)$.

Proof. By Definition 1 and Proposition 3, there is a maximal A'-sequence x'_1, \ldots, x'_s , in $\operatorname{Ann}_{A'}(M)$ such that $0 \neq \operatorname{Ext}_{A'}^{s'}(M, A')$ $\simeq \operatorname{Hom}_{A'}(M, \frac{A'}{(x'_1, \ldots, x'_{x'})A'})$. By Proposition 4, we have $H^{n'-s'}_{\mathfrak{m}}(M)$ $= D(\operatorname{Ext}_{A'}^{s'}(M, A'))$.

Now, from proposition 6 and proposition 7, we have

$$\begin{split} &\operatorname{Att}_{A}(H_{\mathfrak{m}}^{\dim_{A}(M)}(M)) = \operatorname{Att}_{A}(H_{\mathfrak{m}}^{\dim_{A'}(M)}(M)) \\ &= \operatorname{Att}_{A}(H_{\mathfrak{m}}^{n'-s'}(M)) = \operatorname{Ass}_{A}(\operatorname{Ext}_{A'}^{s'}(M,A')) \\ &= \operatorname{Ass}_{A}\left(\operatorname{Hom}_{A'}(M,\frac{A'}{(x'_{1},\ldots,x'_{s'})A'})\right) \\ &= \left\{\mathfrak{p}'A: \mathfrak{p}' \in \operatorname{Ass}_{A'}\left(\operatorname{Hom}_{A'}(M,\frac{A'}{(x'_{1},\ldots,x'_{s'})A'})\right)\right\} \\ &= \left\{\mathfrak{p}'A: \mathfrak{p}' \in \operatorname{Supp}_{A'}(M) \cap \operatorname{Ass}_{A'}\left(\frac{A'}{(x'_{1},\ldots,x'_{s'})A'}\right)\right\}. \end{split}$$

Now, in view of [4, 17.3], $\mathfrak{p}' \in \operatorname{Supp}_{A'}(M) \cap \operatorname{Ass}_{A'}\left(\frac{A'}{(x'_1, \dots, x'_{\mathfrak{g}'}A')}\right)$ if only if $\operatorname{grade}(\mathfrak{p}', A') = s'$ and $\operatorname{Ann}_{A'}(M) \subseteq \mathfrak{p}'$, and by [4, 17.4], if only if $\operatorname{ht}(\mathfrak{p}') = \operatorname{ht}(\operatorname{Ann}_{A'}(M)) = s'$ and $\operatorname{Ann}_{A'}(M) \subseteq \mathfrak{p}$, and so by [4, 17.4] if only if $\dim(A') - \dim(\frac{A'}{\mathfrak{p}'}) = \dim A' - \dim\left(\frac{A'}{\operatorname{Ann}_{A'}(M)}\right)$

and \mathfrak{p}' is minimal element of $\operatorname{Supp}_{A'}(M)$, and if only if $\dim(\frac{A'}{\mathfrak{p}'}) = \dim(\frac{A'}{\operatorname{Ann}_{A'}(M)})$ and \mathfrak{p}' is minimal element of $\operatorname{Ass}_{A'}(M)$.

Since $\dim(\frac{A'}{\mathfrak{p}'}) = \dim(\frac{A}{\mathfrak{p}'A})$, $\dim_{A'}(M) = \dim_{A}(M)$ and $\mathfrak{p}' \in \mathrm{Ass}_{A'}(M)$ if only if $\mathfrak{p}'A \in \mathrm{Ass}_{A}(M)$, hence

$$\begin{split} & \operatorname{Att}_A(H^{\dim_A(M)}_{\mathfrak{m}}(M)) \\ &= \left\{ \mathfrak{p}A' : \mathfrak{p}' \in \operatorname{Supp}_{A'}(M) \cap \operatorname{Ass}_{A'} \left(\frac{A'}{(x_1', \dots, x_{s'}')A'} \right) \right\} \\ &= \left\{ \mathfrak{q} \in \operatorname{Ass}_A(M) : \dim \frac{A}{\mathfrak{q}} = \dim_A(M) \right\}. \end{split}$$

References

- 1. N. Bourbaki, Algebre Commutative, Herman, 1972.
- M. P. Brodman and R. Y. Sharp, Local Cohomology: An Algebric Introduction with Geometric Application, Cambridge University Press, Cambridge, 1998.
- 3. W. Bruns and J. Herzog, *Cohen-Macaulay Ring*, Cambridge University Press, 1993.
- 4. H. Matsumora, ", Commutative Ring Theory", Cambridge University Press, Cambridge, 1986.