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Abstract. In this paper, we introduce the MarKov chain and hyper-
plane arrangement. we prove some properties determined by a hyperplane
arrangement and give an example as an application of them.

1. Introduction

An affine hyperplane in V = R" is an (n — 1) dimensional
affine subspace of R™. A finite set A of affine hyperplanes in R"
is called an affine hyperplane arrangement. A cuts V into re-
gions called chambers. For an element a € R™ and ¢ € R, the set
{z € R™|az < c} is called a half space. A polyhedron is a finite
intersection of half space. A polytope is a bounded polyhedron.
A face of a polyhedron is intersections with hyperplane for which
the polyhedron is contained in one of two half spaces determined
by the hyperplane. Let A = {Hy,---,H,} be an affine hyper-
plane arrangement in R%. The polyhedra determined by A are
called chambers. We denote F by the collection of all faces of
the chambers. Also,we denote by C the collection of all chambers.
The arrangement A is called central if (\zc 4 H # 0. For F € F
and C € C, FC is defined by the nearest chamber to C having
F as a face. The distance between chambers is defined by the
number of hyperplanes in A separating C from FC. The opera-
tor C —— FC will be called the action of F on C. Let w be a
probability measure on F. Then a step in the walk is given by

From C € C, choose F from the measure w and move to FC.
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The random walk started at a chamber Cy is the process (C7),5,,
with C; = F;- - F1Cy, where Fy, F,,--- are picks from w. One
can also describe the walk on C by giving its transition matrix K;

K(C,C)= Y w(F).

FC=C'

Bidigare, Hanlon and Rockmore (denote by BHK) found all the
eigenvalue of K([1]). And K.S.Brown and P.Diaconis got addi-
tional result.([6]). In this paper we study the properties of K(Thm
4.1 ,Thm 4.2) and give an example4.5 as application of them.

2. Arrangements of hyperplanes

Throughout this paper A = {H;};c; denotes a finite set of
affine hyperplanes in V = R™. The intersection lattice S is the
set of all nonempty affine subspaces W C V of the form W =
Micy Hi, where I' C I is an arbitrary subset of I. Then S is a
partially ordered set with the order inclusion. For H € A, we
denote H* and H~ by the two open half spaces determined by
H. The choice of which one to call H* is arbitrary. A face is
defined by a nonempty set FF C V of the form

F=()H",
iel

where o; € {4+, —, 0} and H;° = H;. Equivalently, if we choose for
each ¢ an affine function f; : V —— R such that H; is defined by
fi: = 0, then a face is a nonempty set defined by equalities of the
form f; > 0, f; < 0 or f; = 0, one for each ¢ € I. The sequence
o = (0i);c; Which encodes the definition of F is called the sign
sequence of F and is denoted o (F).

The faces such that o; # 0 for each 7 € I are called chambers.
A face F is open relative to its support, which is defined to be the
affine subspace

suppF = ﬂ H;.
oi (F)=0
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In fact, the faces F with a given support W form the chambers
of the hyperplane arrangement Aw in W consisting of the inter-
sections H; (| W for those i such that ¢;(F') # 0. The arrangement
Aw is called the restriction of A to W.

The face poset of A is the set F of faces, ordered as follows :
Given F,G € F, we say that F is a face of G and write F < G if
for each i € I either o;(F) = 0 or 0;(F) = 0;(G). Two chambers
are said to be adjacent if they have a common codimension 1 face.
The chamber graph of A has C as vertex set, with edges defined by
the adjacency relation. We write d(C, C’) for the distance between
C and C’ in this graph. It is the minimal length ! of a gallery

C=Co,+,Ci=C"

where C;_, and C; are adjacent for 1 < ¢ < [. It is also equal to
the number of hyperplanes in .A separating C from C” (cf[2]§.4E).

Given F,G € F, their product FG is the face with sign se-
quence

oi(F), ifo;(FY#0

oi(FG) = {ai(G), if o (F) =0

IfT = (Ver Hi # 0, we call A centered with center T. If A
is centered, then the coordinates may be choosen so that each
hyperplane contains the origin. In this case we call A central. We
may assume that a hyperplane is essential, that is, that ﬂie Hi =
{0}. We can correspond A to a CW-complex > =3 ,. The cells
of ¥ is the intersection F # {0} with the sphere S™~!. Note that
Y is homeomorphic to $™~1(fig 2-1).

It is also possible to realize Y as the boundary of a convex

———

polytope Y _(fig 2-2). The hyperplane chambers walk can be view
as a walk on the maximal cells of > . Each step consists of a cell e
(possibly empty this corresponds to the face F' = {0} € F) from
some distribution on the cells, and then moving from the current
chamber ¢ to the nearest chamber
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having e as a face.

fig 2 -1 fig 2 -2

A zonotope in a real vector space V is a Minkowski sum Z =
L, + -+ + Li of line segments, usually taken to be centered at
the origin : L; = [—v;,v;]. We may assume that the L; are non-
degenerate and that no two are parallel, i.e.,that the v; are nonzero
and pairwise independent. The L; are then uniquely determined
by Z; in fact, there is one for each parallelism class of edges of
Z. The set of faces of the boundary of Z having an edge parallel
to L; is called the ith zone of Z. Note that Z is the image of
the cube [—1,1]" under the linear map R¥ — V taking the k
standard basis vectors ey, - - ,ex to vy, - - ,v,. Thus Z is the
convex hull of 2% vectors Y, ;< £vi, where the signs can be
chosen arbitrarily. A simple example of a zonotope is a hexagon,
obtained by projecting a cube in R?® onto a plane. see [3] or [4]
for further information about zonotopes. Returning to our central
hyperplane arrangement A in V, there is a zonotope Z = Z4 in
the dual space V*, with one zone for each hyperplane in A, defined
as follows: Choose f; € V* such that H; = kerf; and set

Z=73 |-fifil

el

Equivalently, Z is the convex hull of the 21! elements Zie 1 T fi.
The poset of nonempty faces of Z is anti-isomorphic to the face
poset F of A. This is proved in [3], Proposition 2.2.2, and [4],§7.3.
It also follows by polarity theory([4],§2.3) from the results about
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Y started above and proved in the appendix, since Z is in fact

the polar of the polytope ) defined in the appendix. Thus Z has
one vertex for each chamber C [that vertex being ) o;f;, where
o = o(C)], one edge for each pair of adjacent chambers, ect. In
particular, the 1-skeleton of Z is the chamber graph of A. Figure
2-3 shows a simple example,in which V' = R? and V* is identified
with V.

fig 2 -3

Note that the hyperplane chamber walk can be viewed as a walk
on the vertices of Z. Each step consists of choosing a random e of
Z from some measure on the faces, and then moving from a vertex
v to the unique vertex of e closest to v (in the usual edge-path
metric on the 1-skeleton of Z).

REMARK. In some of the literature there is a slightly different
definition of the zonotope associated to A. Namely, one considers

Z, = Z[Oa fi]7

el

or, equivalently, Z’ is the convex hull of the 27! elements 2ier fis
where s C I is an arbitrary subset. Note that Z’ is obtained
from Z by translating by ), f; and then multiplying by % In
particular, Z and Z’ are combinatorially equivalent.

Mobius function. Finally, we recall the definition of the func-
tion p = ps.(cf. [7] §3.7,0r [8] §2.2) This is defined inductively by
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p(V,V) =1 and, for W GV,
W, V)=- > uWU)

WCUGV

For example, if A consists of 3 lines L; through the origin in R?.
The Mébius numbers are u(R?,R?) = 1, u(L;, R?) = —1, and
n({0}, R?) = = 310y cugre #({0},U) = —(1({0}, {0}) +n({0},
Ly) + u({0}, Lo) +4({0}, L)) = 2.

3. Markov chains

Let U = {a1,--- ,a,} be a set of logical possibilities. A proba-
bility measure for U is obtained by assigning to each element a;
a positive number w(a;), called a weight, in such a way that the
weights assigned have sum 1. The measure of a subset A of U,
defined by m(A),is the sum of the weights assigned to elements
of A. Let ¢ be a certain statement relative to U. We change the
probability set to the truth set ¢ of ¢. The conditional probability
measure given ¢ is a probability measure defined on (), determined
by weights. @)

_ . w aj

w(a’J ) m ( Q) :
Let p be a statement relative a set U having truth set P. The
probability measure m is defined as m(P).

Let p and ¢ be two statements relative to a set U (q not a self
contradiction) The conditional probability of p given ¢ denoted by
Pr[ p | ¢ ] is the conditional probability measure given g.

ProprosiTION 3.1. Under the above situations

Pr[plq]:%fq—]

where Pr| p | ¢ | and Pr{q] are found from the measure m.

Proof. Let Q@ = {a € Ula is true for ¢} and A = {b € U|b
is true for p A ¢}. Then

Zw b) = Z w(b) ZbeAm(b)_Pr[p/\Q]_

Plplal=200=2 0 = Tm@ T Pig
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We wish to give a probability measure to describe an experi-
ment which takes place in stages. The outcome at the n-th stage
is allowed to depend on the outcomes of the previous stages. It is
assumed, however, that the probability for each possible outcome
at a particular stage is known when the outcomes of all previous
stages are known. From this knowledge we shall construct a pos-
sibility space and measure for the over-all experiment. We shall
illustrate the construction of the possibility space and measure by
a particular example. The general procedure will be clear from
this. -

ExAMPLE3.2. We choose at random one of two coins A or B.
Coin A is a fair coin and B has heads on both sides. The coin
chosen is tossed. If a tail comes up a die is rolled. If a head turns
up the coin is thrown again. The first stage of the experiment is
the choice of a coin. At the second stage, a coin is tossed. At the
third stage a coin is tossed or a die is rolled, depending on the
outcome of the first two stage. We indicate the possible outcomes
of the experiment by a tree. The possibilities for the experiment
are t; = (A,H, H),tg = (A, H,T),tg = (A,T,_l),t4 = (A,T, 2),
etc. Each possibility may be identified with a path through the
trees. Each path is made up of line segments called branches.
In the tree we have just given, there are nine paths each hav-
ing three branches. We know the probability for each outcome
at a given stage when the previous stages are known. For exam-
ple, if outcome A occurs on the first stage and 7 on the second
stage, then the probability of a 1 for the branches and call them
branch probabilities. We next assign weights to the paths equal
to the product of the probabilities assigned to the components of
the path. For example the path t3 corresponds to outcome A on
the first stage, T on the second, and 1 on the third. The weight
assigned to this path is

This procedure assigns a weight to each path of the tree and the
sum of the weight assigned is 1. The set U of all paths may be
considered a suitable possibility space for the consideration of any
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statement whose truth value depends on the outcome of the total
experiment. The measure assigned by the path weights is the
appropriate probability measure.

The above procedure can be carried out for any experiment
that takes place in stages. We require only that there be a finite
number of possible outcomes at each stage and that we know
the probabilities for any particular outcome at the j-th stage,
given the knowledge of the outcome for the first j — 1 stages.
For each j we obtain a tree U;. The set of paths of this tree
serves as a possibility space for any statement relating to the first
J experiments. On this tree we assign a measure to the set of
all paths. We first assign branch probabilities. Then the weight
assigned to a path is the product of all branch probabilities on
the path. The tree measure are consistent in the following sense.
A statement whose truth value depends only on the first j stages
may be considered a statement relative to any tree U; for ¢ > j.
Each of these trees has its own tree measure and the probability
of the statement could be found from any one of these measures.
However, in every case the same probability would be assigned.
Assume that we have a tree for an n stage experiment. Let f; be a
function with domain the set of paths U,, and value the outcome
at the j-th stage. Then the functions fy, fo, -, fn are called
outcome functions. The set of functions fi, fa, -+, fn is called
a stochastic process. (In Markov chain theory it is convenient to
denote the first outcome by fy instead of f;.)

A stochastic process for which the outcome functions all have
ranges which are of a given finite set is called a finite stochastic
process.

The domain of f,, is the set Uy, of paths in the tree of n-th stage
and the range of it is the set V,, of possible outcomes for the n-th
experiment.

A finite stochastic process is an independent process if

(I) For any statement p whose truth value depends only on the
outcomes before the n-th,

Pr{fn = s; |p] = Pr[fn = s5].

A finite Markov process is a finite stochastic process such that
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(IT) For any statement p whose truth value depends only on
the outcomes before the n-th,

Prifn = 85 | (fam1 = 8:)) Ap] =Pr{fn =8 | fu-1=si].

The n-th step transition probabilities for a Markov process, de-
noted by p;j(n) = Pr[f, = s; | fa—1 = si]. A finite Markov chain
is a finite Markov process such that the transition probabilities
do not depend on n. In this case, they are denoted by p;;. The
transition matrix for a Markov chain is the matrix P with entries
pi;j- The initial probability vector is the vector

mo = {p; 0} = {Pr(fo = s;]}.

We give two examples of Markov chains;

ExAMPLE 3.3. We imagine a particle which moves in a straight
line in unit steps. Each step is one unit to the right with proba-
bility p or one unit to the left with probability ¢q. It moves unit
it reaches one of two extreme points which are called boundary
points. The possibilities for its behavior at these points determine
several different kinds of Markov chains. The ststes are the possi-
ble positions. We take the case of 4 states, states s; and s4 being
the boundary states, and s2, s3 the interior states.

Assume that the process reaches states sy or sy it remains there
from that time on. In this case, the transition matrix is given by

81 S2 S3 S4

st {1 0 0 O
ss|l ¢g 0 p 0O
s3s| 0 g 0 p
54 0 0 0 1

Assume now that the particle is reflected when it reaches a
boundary point and return to the be relay point from which it
came. Thus if it ever step hits to s; it goes on the next step back
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to sg. If it hits s4 it goes on the next step back to s3. The matrix
of transition probabilities becomes in this case

81 S2 83 84

s1/0 1 0 O
_s2|l¢ 0 p 0
P= s3] 00 ¢ 0 p
s4\0 0 1 O

DEFINITION 3.4 (RANDOM WALK). Let P= (p;;) be a tran-
sition matrix for a Markov chain with states U = {s1,---,s,}.
If pi; # 0, we say that s; can go to s; by one step. If p; ; #
0,pjik; 0, ,Djn_1k, # 0, 8;, can go to s, by n-steps. The
walk on U is called a random walk.

A relation T is said to be a weak ordering if it satisfies reflexity
and transibity. If T is a weak ordering, the relation R defined by
xRy when Ty AyTz is the equivalence relation determined by it.
Let T be a weak ordering defined on U. Define a new relation T*
on the set of equivalence classes by saying that uTv* holds if every
element of u bears the relation T to every element. This a partial
ordering of the equivalence classes induced by 7'. Let us suppose
r individuals are connected through a complex network. Each
individual can pass a message on to a subset of the individuals.
This we will call direct contact. These messages may be relayed,
and relayed again. This will be indirect contact. Let aTb express
that the individual a can contact b or that a = b. It is easy to see
that T is a weak ordering of the set of individuals. It determines
the equivalence relation Ty A yTx,which may be read as z and
y can communication each other, or r = y.

For ¢ and 7 in the same equivalence classes, let V;; be the set
of n such that a message starting from member i can in member
#’s hands at the end of n-steps. We call one step the care which a
message is sent from one member to any other member directly.

If the greatest common divisor of elements of Nj; is designated
d;, it can be shown that d; = d; = d for elements ¢ and j in
the same equivalence class. We can see that a = b(mod d) for
each elements a,b in N;;. Thus for each element a € N;;, a = ¢;;
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for some 0 < t;; < d. clearly, t;; = 0(mod d) and t;; = 0 is an
equivalence relation on a equivalence class a cyclic class.

Let U = {s1,52,---8,} be a state of Markov chain. If we in-

terpret ¢Tj to mean that the process can go from s; to s; (not
' necessarily) one step or s; = s;, then all the results of the above
are applicable. If there is only one cyclic class, then we say the
equivalence class is regular, otherwise we that it is cyclic. The
minimal elements of the partial ordering of equivalence classes are
called ergodic sets. If the ergodic sets are regular, we call it a reg-
ular Markov chain. Note that the first case of the above example
is a regular Markov chain and the 2nd case is not regular Markov
chain because the only one equivalence class has two equivalence
classes {s1,s3} and {sg,s4}. The transition matrix for a regular
Markov chain is called a regular transition matrix. By definitions
it is easy to see that a transition matrix is regular if and only if PV
has no zero entries for some N. We have the following theorems
for regular transition matix.

THEOREM 3.5. If P is a regular transition matrix then

(a) The power P" approach a probability matrix A.

(b) Each row of A is the probability vector a = (a1, a2, - , an),
(c) The components of « are positive.

Proof. [5)

THEOREM 3.6. If P is a regular transition matrix and A and
o are given in the above theorem, then

(a)For any probability vector 7,7 - P" approaches the vector o
as n tends to infinity.

(b) The vector o is the unique probability vector such that
aP = a.

Proof. [5]

4. Main theorems and applications

Returning to a hyperplane arrangement, let C be the set of all
chambers for a hyperplane arrangement .4 in R". Let w be a
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probability measure on the set of all faces 7. The matrix K with
components

K(C,C)y= Y w(F)(C,Cec)
FC=C"

is the transition matrix of the Markov chain with states C.

K*(C,C") = ) K(C,C")K(C",C")
CIIEC

is the chance of moving from C to C’ in two steps. By theorem
3.5, K'(C,C") tends to a limit w(C"), independent of the starting
chamber C:

KY{C,C") — n(C"). as | = oo

Note that K is regular. = is called the stationary distribution of
the walk. Also, 7 is the unique probability distribution satisfying

Y ®(C)K(C,C") = n(C")
ceC

for all C' by Theorem 3.6.

We will say that the measure w separates the hyperplanes in
A,or simply w is separating if for each H € A there is a face F
with F € H and w(F) > 0.

THEOREM 4.1. Let A be hyperplane arrangement in V, let F
be the set of faces, let S be the intersection poset, and let w be
a probability measure on F. Then the matrix K with entries
K(C,C) = Y ro=c W(F) is diagonalizable. For each W €S,
there is an eigenvalue

Aw = Z w(F)
FeF FCW
with multiplicity
mw = |u(W, V)| = (=1)°*#™ WV (W, v)

where u is the Mobius function of § and codim(W,V) is the codi-
mension of Win V.
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THEOREM 4.2. Let A be a hyperplane arrangement, let w be a
probability measure on the set F of faces and K be the transition
matrix. Then (a) K has a unique stationary distribution = if and
‘only if the measure w is separation (b) Let w be separating. Then

IKc' = nllrv < ) A’
HeA

where Ay = ) pe r pc gy W(F) and TV is the total variation. Also
K¢' is the probability measure;

Kc' = (K'(C,C")crec-

Theorems are proved in [6] but we give a proof of theorem 4.1
here because it is interesting to prove it by using homology theory.
Note that we give a proof of some unproved results during the
proof. Before the proof we need some preliminaries.

For any finite set S, let RS denote the vector space of all real
linear combinations ) s a(s)s of elements of S. In particular,
we have vector spaces RC and RF generated by the chambers and
faces of a hyperplane arrangement.

Note that RF is an R-algebra (the semigroup algebra of F)
and RC is an RF-module via the action of faces on chambers.

Given a probability measure w of F, we have an element

T=T,= Y w(F)F.
Fer

of RF, which therefore acts as an operator on RC. Explicitly,
given an element a = ) ;. @(C)C € RC.

T(a)= Y w(Fa(C)FC= ) B(C")C

FeF,CeC c'eC

where

BC)= Y. w(F)a0) =) aC)K(C,C).

FC=C',F,C CecC
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Here K(C,C’) = ) poc w(F). Thus if element of RC are viewed
as row vectors indexed by C, then T acts as right multiplication
by the matrix K. In particular, the eigenvectors of T on RC are
the left eigenvectors of K. ‘ .

We already have an eigenvector ) 7(C)C with eigenvalue 1(=
Ar=» ), where = is any stationary distribution for the chamber walk
defined by K. Let

60 :RC+— R

be defined by 9o(C) = 1 for all C € C. For each F' € F and for
each r € R. If we define F'r = r, then R is as RF-module. It is
easy to see that dy is a homomorphism of RF-modules. Also it is
easy to see that Kerdy is T-invariant, so T'(and hence K) will be
diagonalizable provided its restriction to Ker 8y is diagonalizable.

Choose an orientation for the ambient space V. This means
that we have a rule which associates a sign ¢ = +1 to each or-
dered basis eg, ... ,e, of R?, in such a way that two ordered basis
have the same (resp. opposite) sign if the matrix relating them
has positive(resp. negative) determinant. Similarly, each hyper-
plane H € A is itself a vector space and we choose arbitrary an
orientation for it. Given a chamber C and a codimension 1 face
A of C, define a sign [A;C] = +£1 as follows: choose a positively-
oriented ordered basis ey, ... ,e,_1 for H = suppA, choose v € C,

and set
[A;Cl =e(ey,... ,en_1,v).

If A€ Fy and C,C’ are two chambers having A as a face, then
[A;C'] = —[A; C] because C and C’ are on the opposite sides of
H = suppA. Define the surjective homomorphism '

(91 : Rfl — kerBo

is defined by 01(A) = [A;C]C + [A4;C']C" for A € F;, where
C,C" are the chambers having A as a face. Define an action of
F on RF;. Given F € F and A € Fy, consider the product F A
in the semigroup F. If F C H = suppA, FA in F;, and we
set Fx A=FA. If F ¢ H, then FA is a chamber and we set
F x A = 0. This product makes RF; an RF- module. Also we
can show that the map 8; : RF; —— kerdy is a homomorphism
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of RF-modules. By induction on the dimension of the ambient
spaces V. If we assume that T is diagonalizable on RF;, then it
is diagonalizable on the homomorphic image kerdp, hence also on
RC. Thus the first part of theorem 4.1 is proves.

Now, we want to define a sequence of homomorphisms 0

9p O )l 8o
(*)--—=RFp — .-+ —=RFf - RC—R—0

(which is eventually zero at the left) where F,, is the set of faces of
codimension P in V. In order to define 9, : R, F —— RF,_;,we
need numbers [A; B] = =1 whenever A is a codimension 1 face of
B. Choose an orientation for each W in the intersection lattice
S. Then if we restrict A to the support of B, the face B becomes
a face of codimension 1, and our chosen orientation give us a
number [A; B] = +1. We define a linear map d, : RF, — RF,_;
by 8p(A) = > g.4lA : B]B, where B > A means that A is a
codimension 1 face of B. We can show that d,_19, = 0 for each
p > 0([6]). Thus (*) is a chain complex. Next define an action of
F on RF,. Given F' € F and A € Fp, set

FA, if F C SuppA
FxA=
0, otherwise.

This makes RF, an RF-module, which we may decompose ac-
cording to supports:

RF, = €D RCw,
wes,

where S, = {W € § : codim(W,V) = p} and Cw is the set of
faces with support W. The complex (*) now becomes

NN QB RCyw — @RCH—-HRC%—HR%O.
wesS: HeA

and it is a chain comlpex of RF-modules.
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LEMMA 4.3. The sequence (x) is exact.

Proof. The zonotope Z associated to A is a contractible regular
cell-complex. The operators J, are precisely the boundary oper-
ators of the augmented cellular chain complex of Z ([9]). Since
every contractible space is a cyclic, the augmented chain complex
(*) is exact.

LEMMA 4.4. Let

Om 8
0-Vy—-- =2V 2>V —>0

be an exact sequence of finite dimensional vector spaces. Let T;
be a linear operator on V; such that 8;T; = T;_10; for1 <1< M,
and let p; be the characteristic polynomial of T;. Then

Pop1 Tpapg Tl =1

Proof. Let m = 2. Then Vy = Vi/Va. If Vo =< vy, ...,uq >
, then we can put V; =< 0vy,...,0vg, 81,...,8; > and Vp =<
ds1,...,08; >, where are denoted by 0; = 0y = 0. Let Ta(v;) =

» . aiv;, 1 <i<d and let A= (a;;). Then ps = det(A] —
j=1ijVj j

A) Ti((‘?vi) = BTQ(’U,) = 8(2?21 a,-jvj) = Z?:l G,j,;a(’l)j). Let
T1(84) = 22:1 byaOvy + Egzl cgasp, 1 < a <!l Let B = (byq)
and C = (¢pqa). Then the matrix of T; is

A B
0 C
and thus ¢; = det(A] — A) - (Al — C). Also

d l
To(8sa) = 01T1(5a) = 01()_ byadvy + Y _ cgasp)
=1 B=1"

l l
= 31(2 Cﬁa.Sg) = Z Cﬂaalsﬁ.
ﬂ:]_ ﬂ:l
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So o = det(AI — C). Hence we have

©1 = P2%0

and 80 Yoz~ lws = 1. Now assume that the lemma is true for k <
2m +1 Let Vayqq =< 1, ...,v4 > and Vo, =< 0vy, ..., 0vg, 81, ...,
s; > . Consider the exact sequences

0 —— Vom/Vomy1 —— Vo —— Vomoy —— -+

J'sz Jszm 1T2m~l

0 — V2m/vv2m+1 E— V2m S V2m—1 _— -

Then, by the induction hypothesis,

Popr - Pam = 1.

Also it is easy to shows that
¢2m = 902m+1~1902m-

Therefore o1~ Yam@ams+1~ = 1 and so the conclusion is
true for this case. Similarly, we can show the conclusion is true
for the case of 2m + 2.

Now, let’s return to the proof of the remaining part of theo-
rem 4.1. Applying lemma 4.4 to the operator T = ) w(F)F on
(*), we may assume inductively that we have a decomposition of
characteristic polynomial ¢y of T acting on RCy for each U #V
in S,say

o= [ =2,
WesS;WCU

because py(A) = A — Afgy if U = {0} = N H;.
Note that
T: ]RC{O} — RC{()}
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is the map T'(r) = rw{0}. Thus the characteristic polynomial is
A—w{0} = XA — Afp3. By lemma 4.3 and lemma 4.4 the charac-
teristic polynomial ¢ = @y for T is

_{_1yecodim{U, V)m(W.U)
N =0=- ) J[ G-aw)Y ,

WU WCUGV

because ; correspond to characteristic polynomial of the operator

between the vector space of codimension i — 1 generators. If we
put m(V,V) =1 and for W & V,

mW,V)y=- > ()= EVmw ),

UWCUGV

then v(A) = [Tes (A = Aw)™ V).
It is enough to show that

m(‘V, ‘/r) — (_1)C0dim(W,V)u(W, V)

We prove this by induction on the codim(W, V). f W = V (i.e
codim(W, V) = 0),

m(V,V) = p(V,V) = 1.

We assume that the equation is true for codim(W,V) < k.
Let codim(W, V) = k + 1 Then

mW,V)=- Y (1) mw,v)

WgUgV

—_ Z (wl)codim(U,V)(_l)COdim(W,U),JI(W’ U)
WgUgV

- Z (__1)Codim(U,V)+C0dim(W,U)u(W, U)
WgUgV

— Z (—I)COdim(W’V),U;(W/, U)
WQU(:;V

— (__1)c0dim(W,V)‘uJ(W’ V)

Thus we proved theorem 4.1 for the central case. We abbreviate
the proof for the non-central case. A proof of it is proved in ([6]).

Now we give an example as an application of the theorem
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EXAMPLE 4.5. Let A consist of m lines through the origin in
R2. There are 4m-+1 faces 2m chambers, 2m rays, and the origin.
Suppose,for this exposition, that the measure w is supported on
the set of rays. One can then picture the walk as follows; There
are 2m rooms in a circular house. A mouse lives in the walks
R(The rays), occupying these with propensity w(R). At each step
of the walk, a cat is in one of the rooms and the mouse picks a wall
;the cat moves to nearest adjacent to that wall. The 1-dimensional
spherical complex Y is 2m-gon in this example. The chambers of
the hyperplane arrangement correspond to the edges of >, and the
rays correspond to the vertices of a 2m-gon. If the rays are chosen
uniformly, w(R) = 5= for all R, then the stationary distribution
7 is of course uniform. For general weights, w is separating unless
it is supported on a pair +R of opposite rays.

The eigenvalues given by Theorem 4.1 are as follows: Each
of the m lines L contributes an eigenvalue Ay, = w(R) + w(—R)
of multiplicity my = —u(L,V) = 1, where +R are the rays in
L. The whole plane V = R? contributes the eigenvalue Ay = 1
with multiplicity x(V,V) = 1. Finally, the trivial subspace {0}
contributes the eigenvalue Argy = 0 with u({0},V) =m — 1.

Consider now the bound of Theorem 4.2 in two simple cases.
Suppose first that w(R) = 3= for each R, so that = is uniform,
n(C) = 5= for all C. Here A, = = so the bound becomes

1 m

!

IKc! = nllrv < E AL = oy =
)

It follows that for large m the distance to stationarity is small
after two or three steps.

As a second example, suppose one weight is large and the other
are small, e,g., w(R1) = }, w(R) = m for R # R;. Then the
bound becomes

1" = alley < (% * m)l +(m - U(zml— 1)l

mt+m —1
(2m — 1)t
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Again, a few steps suffice for convergence to stationarity, but the
result is not quite as quick as in the uniform case.
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