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COMPACT KÄHLER-EINSTEIN 4-MANIFOLD

Mi-Ae Kim

Abstract. The object of this paper is to find the 4-dimensional
compact Einstein manifold with negative Ricci curvature r.

1. Introduction

Let M be a smooth compact 4-dim. manifold. An Einstein metric
g on M satisfies that

r = λg

where r is th Ricci curvature of g and λ is real constant. Therefore,
every Einstein manifold M always admits constant scalar curvature s.
In particular, for 4-dimensional case, s = 4λg, and then we get that r =
(s/4)g. This means that to get a constant scalar curvature metric on
M is a necessary condition. Actually, by Friedman’s classification, R =
CP2#8CP 2, which is the standard smooth structure and the Barlow
surface S, which is a simply-connected minimal surface of general type
with q = pg = 0 and K2 = 1 are homeomorphic but not diffeomorphic.

But it was proved by Catanese and LeBrun[CL] that R×R, S × S
are diffeomorphic. And R = CP2#8CP 2 is Kähler-Einstein manifold
with positive scalar curvature.

From the above three facts, we can get a possibility that S has
Kähler-Einstein metric with negative Ricci curvature. Actually, the
second fact is the counter-example of Besse’s conjecture[Be] for 8-
dimensional case that no smooth compact n-manifold can ever admit
Einstein metrics with different signs of λ. But that conjecture still
stands in dimension 4. By the way, Lohkamp[L], generalizing an ear-
lier result of Gao and Yau[GY], has shown that absolutely every smooth
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manifold of dim. n ≥ 3 admits Riemannian metrics of negative Ricci
curvature. But that metric induces locally negative Ricci curvature,
that is, doesn’t imply negative constant Ricci curvature on the entire
manifold. Therefore that metric is not Einstein.

2. On Ricci Curvatures for CP2, S2 × S2, S4

At first, what we can do is to find 4-dim. Einstein manifold and
calculate Ricci curvature directly CP2, S2 × S2, S4 are well-known
examples of 4-dimensional compact Einstein manifold. On the other
hand, there are few examples of compact 4-manifolds, which don’t
admit Einstein metric manifold. If M is an Einstein manifold, then M
must have Euler characteristic χ ≥ 0 with equality, iff M is Flat, and
so that T 4#T 4&S1 × S3 don’t admit Einstein metrics. For the well-
known examples CP2,S2 × S2, S4, we will check whether their Ricci
curvatures have negative sign or not, case by case.

For CP2, Yau[Y1] proved that the only Kähler-Einstein metric on
CP2 is th usual Fubini-Study metric with positive sectional curvature
c = 4. Therefore, there is no negative Ricci curvature of Einstein
metric on CP2.

For S2×S2, as Riemannian manifold, we consider the general prod-
uct manifold (Sp(a)×Sq(b), a2ds2

p +b2ds2
q). For the orthonormal frame

Fi, i = 1, 2, 3, 4

Ric(Fi) =

{
(1/a2)(p− 1)Fi(i ≤ p)

(1/b2)(q − 1)Fi(i > P )

If take p = q = 2, a = b = 1, i.e. S2×S2, then the product metric is
Einstein with positive constant. As complex manifold, since S2 is the
underlying differential manifold of CP1, the complex structure of S2 is
1-dim. complex projective space. The first fact that CP1 has only the
usual Fubini-Study metric and its metric has constant positive Ricci
curvature and the second one that M ×M is Einstein manifold with
the same constant for Einstein manifold M with a constant λ have
induced that S2×S2 is Einstein manifold with positive constant Ricci
curvature.

For S4, using the theorem proved by Borel & Serre[BS] that Sn, for
n 6= 2, 6 doesn’t admit almost complex structure, S4 has no almost
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complex structure metric. By Ziller[Z], S4 has only one homogeneous
Einstein Riemannian metric and its Ricci curvature is positive. Then
we have to decide whether S4 has nonhomogeneous Einstein Riemann-
ian metric. But since S4 is symmetric, S4 is homogeneous from ch.7 in
[Be]. Only remaining study is to construct compact complex surface
that admits Kähler- -Einstein manifold with negative Ricci curvature.

3. Einstein metrics on compact complex surfaces

At first, I would like to introduce the famous several theorems for
existence of Einstein metric.

Theorem A (Calabi[Cal] & Yau[Y2] ). Let M be a compact
Kählermanifold, ω its Kählerform, c1(M) the real first Chern class of
M . Any closed(real) 2-form of type(1.1) belonging to 2πc1(M) is the
Ricci form of one and only one Kählermetric in the Kählerclass of ω.

Theorem B (Aubin[Aub] & Yau[Y2]). Any compact complex
manifold with negative first Chern class admits a Kähler- Einstein
metric with negative scalar curvature. This metric is unique up to
homothety.

This metric is called Aubin-Calabi-Yau metric. And the statement
analogous to theorem B, when the first Chern class is assumed to be
positive, is false from [Be].

Proposition A. The sign of the (constant) scalar curvature s of a
Kähler-Einstein metric -if any- on given (compact) complex manifold
M is determined by the complex structure of M . Moreover, the value
of s is then determined by

V sm = ((4πm)m/(m))cm
1 (M)

where cm
1 (M) denotes the Chern number associated with the m-th

power of the 1st Chern class of M , depending on the complex structure
only, and V the total volume.

As we just saw, a necessary condition for a given (compact) complex
manifold to admit a Kähler-Einstein metric is that its first Chern class
have a sign, negative, zero or positive.
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Theorem C. The compact complex manifolds with positive (neg-
ative) first Chern class are exactly the compact complex manifolds
admitting a Kählermetric with positive (negative) Ricci form.

Theorem D. Let M be a compact complex manifold of dimension
at least 2, such that -c1(M) can be represented by a Kählerform. Then
M admits a Kähler-Einstein metric.

Theorem E. If on the 2-dimensional compact, connected complex
manifold X with c2

1(X) = 3c2(X), there exists a Kähler-Einstein met-
ric, then the holomorphic sectional curvature is constant.

Since compact complex surface X with constant sectional curvature
admits Kähler-Einstein metric g, the following necessary and sufficient
condition for existence of Kähler-Einstein metric.

Theorem F. A compact complex surface X with c2
1 = 3c2 has

Kähler-Einstein metric if and only if X has constant sectional curva-
ture.

To approach the Barlow surface that is homeomorphic to CP2#8CP 2

we will consider the problem of classifying up CP2#kCP 2 = Σk.
For k = 0, there is Yau’s result that any complex surface homeo-

morphic to CP2 is diffeomorphic to CP2. For k = 1, there are the
Hirzebruch surfaces Σn(n = odd) which are known to be diffeomor-
phic to the standard CP2#CP 2. On the other hand, we have the
result of Friedman and Morgan[FM] that CP2#kCP 2 has infinitely
many smooth structures underlying algebraic surfaces if k ≥ 9. By
the Enrigues-Kodaira classification of complex surfaces, the only other
surfaces possibly homeomorphic to some CP2#kCP 2 with 0 < k < 9
are surfaces of general type. It can be proved ([Hit] or [Y3] ) that
the complex surfaces Σk obtained from CP2 by blowing up k distinct
points, 0 ≤ k ≤ 8, do have a positive first Chern class, whenever those
points are in general position, that is; no 3 of them lie on a same line,
no 6 of them lie on a same conic curve, and if k = 8, they are all simple
points of each cubic curve passing through all eight of them.

Moreover, the manifolds Σk are the only (compact) complex surfaces
having positive first Chern class, with CP2, CP1×CP1. Consequently,
those are the only compact complex surfaces on which the existence of a
Kähler-Einstein metric with positive scalar curvature can be expected.
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On the other hand, the complex surfaces Σ1, Σ2, Σ3 are proved to admit
no Kähler-Einstein metric, by showing that their connected group of
complex automorphisms is not reductible by Theorem G. Concerning
this question, nothing is known for the other complex surfaces Σk,
4 ≤ k ≤ 8 by 1987.

Theorem G. The identity component U0(M) of the automorphism
group of a compact complex manifold carrying a Kähler-Einstein met-
ric is reductible.

For 1 ≤ k ≤ 6, the manifolds Σk are known as Del Pezzo surfaces
(of degree 9 − r). Among them, two families only can be realized
as a complete intersection in a complex projective space; Σ6 which
is (complex) hypersurfaces of degree 3 in CP3 and Σ5 which is the
intersection of two quadrics (complex hypersurface of degree 2) of CP4

(loc. cit.). (recall that CP1×CP1 itself is realized as a quadric of CP3).
Since for d > N , M can admit a Kähler-Einstein metric where M is a
complex hypersurface of deg d in CPN , two cases Σ5, Σ6 can’t admit
Kähler-Einstein metrics. But in 1990, Tian[T], building on his joint
work with Yau[Y5], has shown that CP2#8CP 2 admits an Kähler-
Einstein metric g of scalar curvature +1.

Theorem H([Y4]). Let M be a Kählerian manifold of complex
dimension m with negative c1(M). Then

(−1)m2(m + 2)c2c1
(m−2) −mc1

m ≥ 0

.

Equality holds iff the holomorphic sectional curvature of the Aubin-
Calabi-Yau metric is constant(negative) so that M is (holomorphically)
covered by the unit ball in Cm.

4. Existence for Einstein metrics with negative Ricci cur-
vature on compact 4-dim. manifolds

We got two examples for compact 4-dim. Einstein manifolds with
negative Ricci curvature. The first one is Barlow surface as algebraic
aspect. The second is Eχ, the complex line bundle CP1 with Euler
number χ as partial differential equation’s one. Now, we introduce the
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Barlow surface. Let F be a quintic surface in CP3 with exactly 20 nodes
and no other singularities. Thus F naturally carries the structure of
a complex orbifold. We will be interested in the case in which F is a
global orbifold;

F = Y/Z2

for some compact complex 2-manifold Y with a holomorphic involution.
Using the theory of Hilbert modular surfaces, the specific 20 nodal
quintic surface F

5∑
j=1

z5
j = (5/4)(

5∑
j=1

z2
j )(

5∑
j=1

z3
j )

5∑
j=1

zj = 0

is a hyperplane of CP4.
The symmetric group S5 acts on F , and in particular we have an

action of the dihedral group D10 ⊂ S5 of pentagonal isometries, gen-
erated by (25)(34) and (12345). This action lifts to Y in such a way
that the cyclic subgroup Z5 ⊂ D10 generated by (12345) acts freely
on Y and such that the involution (25)(34) acts with exactly 20 fixed
points. The so-called Catanese surface X = Y/Z5 is therefore non-
singular, and comes equipped with an involution α, we obtain a surface
X/Z2 whose only singularities are four nodes. The Barlow surface is
by definition the minimal resolution S of X/Z2. with an involution
α : X → X with exactly 4 fixed points. Dividing X by the action
of the involution α, we obtain a surface X/Z2 whose only singulari-
ties are four nodes. The Barlow surface is by definition the minimal
resolution S of X/Z2. One can show [B] that S is a minimal, simply
connected complex surface of general type, with c2

1(S) = 1, q = pg = 0.
Specially,since −c1(Y ) is represented by a positive 2-form in Y , it is
also, by averaging, represented by a positive Z5-invariant 2-form; such
a form descends to X, and represents -c1(X). In the same vein, -c1(S)
is represented by a positive 2-form in Barlow surface S. Therefore, the
first Chern number c1(S) in Barlow surface is negative form. From
Theorem D and Theorem B, Barlow surface S admits Kähler-Einstein
metric with negative scalar curvature.
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Theorem. The Barlow surface S is a compact Kähler-Einstein man-
ifold with negative Ricci curvature.

For the second example, we will discuss metrics of form

dr2 + Φ2(r)σ2
1 + Ψ2(r)(σ2

2 + σ2
3)

where σi is the standard orthonormal frame on S3 satisfying dσi =
−2σi+1 ∧ σi+2 (all indices are mod 3). U(2) acts by isometries on the
metrics. Denote by Θ0 = dr, Θ1 = Ψσ1,Θ2 = Ψσ2, Θ3 = Ψσ3 the
standard orthonormal coframe on I × S3 with respect to the metric
and ∂/∂r, ξ1, ξ2, ξ3 corresponding orthonormal frame. By calculating
curvature directly,

S23 =
4Ψ2 − 3Φ2

Ψ4
− Ψ̇2

Ψ2
,

S10 = − Φ̈
Φ

,

Si0 = − Ψ̈
Ψ

, i = 2, 3,

S1i =
Φ2

Ψ4
− Φ̇Ψ̇

ΦΨ
, i = 2, 3,

< R(ξ1, ξ2)ξ3, ξ0 >=
Φ̇Ψ− ΦΨ̇

Ψ3
= K,

where Sij = sec(ξi, ξj)
Then the curvature operator R is

R =
(

A B

B∗ D

)
B = 1/2diag(−S01 + S23,−S02 + S13,−S03 + S12)

A = 1/2diag(S01 + S23 − 4K, S02 + S13 + 2K, S03 + S12 + 2K)

D = 1/2diag(S01 + S23 + 4K, S02 + S13 − 2K, S03 + S12 − 2K)

In order to get a Einstein metrics, we need to solve that B = 0.
That is,

S01 = S23 : − Φ̈
Φ

=
4Ψ2 − 3Φ2

Ψ4
− Ψ̇2

Ψ2
,
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S02 = S13, or S03 = S12 : − Ψ̈
Ψ

=
Φ̇Ψ̇
ΦΨ

.

The Einstein constant is Ric(ξ0, ξ0) = − Φ̈
Φ−

2Ψ̈
Ψ = λ. We will denote by

E the complex line bundle over CP1 with Euler number. For Kählerian
case, the necessary and sufficient condition for existence of Einstein
metric with negative constant λ is the existence of solutions Φ,Ψ such
that

Φ = ΨΨ̇

Ψ̇2 = 1− (λ/6)Ψ2 + ((λ/6)− 1)Ψ−4

with Ψ(0) > 0, Ψ̇(0) = 0. When λ ≤ 0, the right side of the above
second equation has no zero except at t = o. Thus the solution exists
for all time. For λ < 0 (λ = 2(2 − χ) for χ > 2), the metric induced
by such Φ, Ψ is Kähler-Einstein metric with negative Ricci curvature
on Eχ.
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