LEFT(RIGHT) FILTERS ON PO-SEMIGROUPS

S. K. LEE AND S. S. LEE

ABSTRACT. In this paper, we give the characterization of a left (right) filter of po-semigroups.

1. Introduction

Kehayopulu([3]) gave the characterization of the filter of S in term of the prime ideals. A po-semigroup (: ordered semigroup) is an ordered set S at same time a semigroup such that $a \leq b \Longrightarrow xa \leq xb$ and $ax \leq bx$ for all $x \in S$.

DEFINITION 1([3, 4]). Let S be a po-semigroup. A nonempty subset A of S is called an right (left) ideal of S if

- 1) $AS \subseteq A(\text{resp. } SA \subseteq A)$,
- 2) $a \in A$ and b < a for $b \in S \Longrightarrow b \in A$.

A is called an *ideal* of S if it is a right and left ideal of S.

DEFINITION 2([3, 5]). A subset T of S is called *prime* if $AB \subseteq T \Longrightarrow A \subseteq T$ or $B \subseteq T$ for subsets A, B of S.

T is called a *prime right* (left) ideal if T is prime as a right (left) ideal. T is called a prime ideal if T is prime as an ideal.

DEFINITION 3. A subsemigroup F of a po-semigroup S is called a left(resp. right) filter of S if

- 1) $ab \in F$ for $a, b \in S \Longrightarrow a \in F$ (resp. $b \in F$),
- 2) $a \in F$ and $a \le c$ for $c \in S \Longrightarrow c \in F$.

A subsemigroup F of S is called a filter([1, 2]) of S if F is a left and right filter.

In this paper, we give the characterization of a left (right) filter of S in term of the right (left) prime ideals

Received October 25, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: po-semigroup, left (right) filter, prime, prime left (right) ideal.

2. Main Theorems

THEOREM 1. Let S be a po-semigroup and F a nonempty subset of S. The following are equivalent:

- 1) F is a left filter of S.
- 2) $S \setminus F = \emptyset$ or $S \setminus F$ is a prime right ideal

Proof. 1) \Longrightarrow 2). Assume that $S \setminus F \neq \emptyset$. Let $x \in S \setminus F$ and $y \in S$. Then $xy \in S \setminus F$. Indeed: If $xy \notin S \setminus F$, then $xy \in F$. Since F is a left filter, $x \in F$. It is impossible. Thus $xy \in S \setminus F$, and so $(S \setminus F)S \subseteq S \setminus F$.

Let $x \in S \setminus F$ and $y \leq x$ for $y \in S$. Then $y \in S \setminus F$. Indeed: If $y \notin S \setminus F$, then $y \in F$. Since F is a left filter, $x \in F$. It is impossible. Thus $y \in S \setminus F$. Therefore $S \setminus F$ is a right ideal.

Next we shall prove that $S \setminus F$ is prime. Let $xy \in S \setminus F$ for $x, y \in S$. Suppose that $x \notin S \setminus F$ and $y \notin S \setminus F$. Then $x \in F$ and $y \in F$. Since F is a subsemigroup of S, $xy \in F$. It is impossible. Thus $x \in S \setminus F$ or $y \in S \setminus F$. Hence $S \setminus F$ is prime, and so $S \setminus F$ is a prime right ideal.

2) \Longrightarrow 1). If $S \setminus F = \emptyset$, then F = S. Thus F is a left filler of S.

Next assume that $S \setminus F$ is a prime right ideal of S. Then F is a subsemigroup of S. Indeed: Suppose that $xy \not hnF$ for $x,y \in F$. Then $xy \in S \setminus F$ for $x,y \in F$. Since $S \setminus F$ is prime, $x,y \in S \setminus F$. It is impossible. Thus $xy \in F$, and so F is a subsemigroup of S.

Let $xy \in F$ for $x, y \in S$. Then $x \in F$. Indeed: If $x \notin F$, then $x \in S \setminus F$. Since $S \setminus F$ is a prime right ideal of S, $xy \in (S \setminus F)S \subseteq S \setminus F$. It is impossible. Thus $x \in F$.

Let $x \in F$ and $x \leq y$ for $y \in S$. Then $y \in F$. Indeed: If $y \notin F$, then $y \in S \setminus F$. Since $S \setminus F$ is a right ideal of S, $x \in S \setminus F$. since $S \setminus F$ is a right ideal. It is impossible. Thus $y \in F$.

Therefore F is a left filter of S.

By the similar method, we have the following theorem 2.

THEOREM 2. Let S be a po-semigroup and F a nonempty subset of S. The following are equivalent:

- 1) F is a right filter of S.
- 2) $S \setminus F = \emptyset$ or $S \setminus F$ is a prime left ideal

From Theorem 1 and 2, we get the following.

COROLLARY ([3]). Let S be a po-semigroup and nonempty subset of S. The following are equivalent:

- 1) F is a filter of S.
- 2) $S \setminus F = \emptyset$ or $S \setminus F$ is a prime ideal S.

References

- 1. N. Kehayopulu, On filters generalized in poe-semigroups, Math. Japon., 35(4) (1990), 789-796.
- 2. N. Kehayoupulu, Remark on ordered semigroups, Math. Japon., 35(4) (1990), 1061-1063.
- 3. N.Kehayoupulu, On left regular ordered semigroups, Math. Japon., 35(6) (1990), 1057-1060.
- 4. S. K. Lee and Y. I. Kwon, On left regular po-semigroups, Comm. Korean Math. Soc., 13(1) (1998), 1-6.
- 5. S. K. Lee and Y. I. Kwon, A generalization of the Theorem of Giri and Wazalwar, Kyungpook Math. J., 37(1) (1997), 109-111.

Department of Mathematics Gyeongsang N. University

Chinju 660-701, Korea.

E-mail: sklee@nongae.gsnu.ac.kr