ALMOST PERIODIC POINTS FOR MAPS OF THE CIRCLE

SUNG HOON CHO AND KYUNG JIN MIN

ABSTRACT. In this paper, we show that for any continuous map f of the circle S^1 to itself, (1) if $x \in \Omega(f) \setminus \overline{R(f)}$, then x is not a turning point of f and (2) if P(f) is non-empty, then R(f) is closed if and only if AP(f) is closed.

1. Introduction

Let X be a compact metric space, S^1 the unit circle and I the unit closed interval. Suppose that f is a continuous map of X to itself. For any positive integer n, we define $f^1 = f$ and $f^{n+1} = f \circ f^n$. Let f^0 be the identity map of X. Let $AP(f), P(f), R(f), \Gamma(f), \Lambda(f)$ and $\Omega(f)$ denote the set of almost periodic points, periodic points, recurrent points, γ -limit points, ω -limit points and nonwandering points of f, respectively.

In 1980, Z. Nitecki [5] proved that for any piecewise monotone map f of the closed interval I to itself, if $x \in \Omega(f) \setminus \overline{R(f)}$, then $f^n(x)$ is not a turning point of f for any $n \geq 0$. And J.C. Xiong [4] proved that for any continuous map f of the closed interval I itself, R(f) is closed if and only if AP(f) is closed. L. Block, E. Coven, I. Mulvey and Z. Nitecki[7] proved that if f is a continuous map of the circle S^1 to itself such that P(f) is closed and non-empty, then $P(f) = \Omega(f)$. Also, J.S.Bae, S.H.Cho, K.J.Min and S.K. Yang[6] proved that for any continuous map f of the circle if P(f) is empty, then $R(f) = \Omega(f)$.

In this paper, we show that for any continuous map f of the circle S^1 to itself, (1) if $x \in \Omega(f) \setminus \overline{R(f)}$, then x is not a turning point of f and (2) if P(f) is non-empty, then R(f) is closed if and only if AP(f) is closed.

Received September 9, 1999.

¹⁹⁹¹ Mathematics Subject Classification: Primary 58F13, 58F22.

Key words and phrases: almost periodic points, turning points, ω -limit points, α -limit points.

2. Preliminaries and Definitions

Suppose that f is a continuous map of the circle S^1 to itself. Let \mathbb{R} be the set of real number and \mathbb{Z} be the set of integer. Formally, we think of the circle S^1 as $\mathbb{R} \setminus \mathbb{Z}$. Let $\pi : \mathbb{R} \to \mathbb{R} \setminus \mathbb{Z}$ be the canonical projection. In fact, the map $\pi: \mathbb{R} \to S^1$ is a covering map. We say that a continuous map F from R into itself is a lifting of f if $f \circ \pi = \pi \circ F$. We use the following notations in this paper. Let $a, b \in S^1$ with $a \neq b$, and let $A \in \pi^{-1}(a)$, $B \in \pi^{-1}(b)$ with |A - B| < 1 and A < B. Then we write $\pi((A, B)), \pi([A, B]), \pi([A, B))$ and $\pi((A, B])$ to denote the open, closed and half-open arcs from a counterclockwise to b, respectively, and we denote it by (a,b), [a,b], [a,b) and (a,b]. For $x,y \in [a,b]$ with $a \neq b$. let $X \in \pi^{-1}(x), Y \in \pi^{-1}(y)$ with $X, Y \in [A, B]$, then we define x > y if and only if X > Y. In particular, for $a, b, c \in S^1, a < y$ b < c means that $b \in (a,c)$. Define a metric d on the circle S^1 by $d(\pi(X), \pi(Y)) = |X - Y|$, where $X, Y \in \mathbb{R}$ and $|X - Y| < \frac{1}{2}$. Then d is a well-defined metric on S^1 which is equivalent to the original one. For the convenience, we use this metric d on S^1 .

Let f be a continuous map of the circle S^1 to itself. A point $x \in S^1$ is a periodic point of f provided that for some positive integer n, $f^n(x) = x$. The period of x is the least such integer n. We denote the set of periodic point of f by P(f).

A point $x \in S^1$ is a recurrent point of f provided that there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to x$. We denote the set of recurrent points of f by R(f).

A point $x \in S^1$ is called a nonwandering point of f provided that for every neighborhood U of x, there exists a positive integer m such that $f^m(U) \cap U \neq \emptyset$. We denote the set of nonwandering points of f by $\Omega(f)$.

A point $y \in S^1$ is called an ω -limit point of $x \in S^1$ provided that there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to y$. We denote the set of ω -limit points of x by $\omega(x, f)$. We define $\Lambda(f) = \bigcup_{x \in S^1} \omega(x, f)$ and $\Lambda(A) = \bigcup_{x \in A} \omega(x, f)$ for any subset $A \subset S^1$. Note that $\Lambda(A) \subset \Lambda(B)$ for subsets A, B of S^1 with $A \subset B$.

A point $y \in S^1$ is called an α -limit point of $x \in S^1$ if there exist a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ and a sequence $\{y_i\}$ of points in S^1 with $y_i \to y$ such that $f^{n_i}(y_i) = x$ for all $i \ge 1$. We denote the set of α -limit points of x by $\alpha(x, f)$.

A point $y \in S^1$ is called an γ -limit point of $x \in S^1$ provided that $y \in \omega(x, f) \cap \alpha(x, f)$. We denote the set of α -limit points of x by $\gamma(x, f)$ and $\Gamma(f) = \bigcup_{x \in S^1} \gamma(x, f)$.

Now, we define $\alpha_+(x,f)$ and $\alpha_-(x,f)$ as follows: $y \in \alpha_+(x,f)$ (resp., $y \in \alpha_-(x,f)$) provided that there exist a sequence $\{n_i\}$ of positive integer with $n_i \to \infty$ and a sequence $\{y_i\}$ of points in S^1 with $y_i \to y$ such that $f^{n_i}(y_i) = x$ for all $i \ge 1$ and $y < \cdots < y_{i+1} < y_i < \cdots < y_2 < y_1$ (resp., $y_1 < y_2 < \cdots < y_i < y_{i+1} < y$). It is easy to show that if $x \notin P(f)$, then $\alpha(x,f) = \alpha_+(x,f) \bigcup \alpha_-(x,f)$.

A point $x \in S^1$ is called a turning point of f if f is not local homeomorphism at x.

A point x is almostic periodic point of f provided that for any $\epsilon > 0$ one can find an integer n > 0 with the following property that for any integer q > 0 there exists an integer r with $q \le r < q + n$ such that $d(f^r(x), x) < \epsilon$, where d is the metric of S^1 .

3. Main Results

The following lemmas appear in [1].

LEMMA 1. [1] Suppose that f is a continuous map of the circle S^1 to itself. Then

$$P(f)\subset R(f)\subset \Gamma(f)\subset \overline{R(f)}\subset \Lambda(f)\subset \Omega(f).$$

LEMMA 2. [1] Let $f \in C^0(S^1, S^1)$ and J = [a, b] be an arc for some $a, b \in S^1$ with $a \neq b$, and let $J \cap P(f) = \emptyset$.

- (a) Suppose that there exists $x \in J$ such that $f(x) \in J$ and x < f(x). Then
 - (1) if $y \in J, x < y$ and $f(y) \notin [y, b]$, then [x, y] f-covers [f(x), b],
 - (2) if $y \in J, x > y$ and $f(y) \notin [y, b]$, then [y, x] f-covers [f(x), b].
- (b) Suppose that there exists $x \in J$ such that $f(x) \in J$ and x > f(x). Then
 - (1) if $y \in J$, x < y and $f(y) \notin [a, y]$, then [x, y] f-covers [a, f(x)],
 - (2) if $y \in J, y < x$ and $f(y) \notin [a, y]$, then [y, x] f-covers [a, f(x)].

The following lemma appears in [4].

LEMMA 3. [4] Suppose that f is a continuous map of the circle S^1 to itself. Then $x \in AP(f)$ if and only if $x \in \omega(x,y)$ and $\omega(x,f)$ is minimal.

PROPOSITION 4. Suppose that f is a continuous map of the circle S^1 to itself. Then

$$P(f) \subset AP(f) \subset R(f)$$
.

Proof. By Lemma 3, $AP(f) \subset R(f)$. If $P(f) = \emptyset$, then obviously, $P(f) \subset AP(f)$. Suppose that $P(f) \neq \emptyset$. Let $x \in P(f)$ and n be the period of x. Then $x \in \omega(x, f)$ and $f^n(x) = x$. Let y be any point in $\omega(x, f)$. Then there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to y$. Since $f^n(f^{n_i}(x)) = f^{n+n_i}(x) = f^{n_i+n}(x) = f^{n_i}(f^n(x)) = f^{n_i}(x)$ for all positive integers $i, f^{n_i}(x) \to f^n(y)$. Therefore $y \in P(f)$ and $y \in R(f)$ by Lemma 1. Hence $y \in \omega(y, f)$. Therefore $\omega(x, f) \subset \omega(y, f)$. We show that $\omega(y, f) \subset \omega(x, f)$. Let $z \in \omega(y, f)$. Then there exists a sequence $\{m_i\}$ of positive integer with $m_i \to \infty$ such that $f^{m_i} \to z$. Since $y \in \omega(x, f)$ and $f^{n_i}(x) \to y$, $f^{m_i+n_i}(x) \to z$. Hence $z \in \omega(x, f)$. Thus $\omega(y, f) \subset \omega(x, f)$. Therefore $\omega(x, f)$ is a minimal set. Hence we have $x \in AP(f)$ by Lemma 3. The proof is completed.

By combining Lemma 1 and Proposition 4, we have the following proposition.

PROPOSITION 5. Suppose that f is a continuous map of the circle S^1 to itself. Then $P(f) \subset AP(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f)$.

LEMMA 6. [1] Suppose that f is a continuous map of the circle S^1 to itself. Then $x \in \Omega(f)$ if and only if $x \in \alpha(x, f)$.

THEOREM 7. Let f be a continuous map of the circle S^1 to itself. If $x \in \Omega(f) \setminus \overline{R(f)}$, then x is a not turning point of f.

Proof. Suppose \underline{x} is a turning point of f. Let C be a connected component of $S^1 \setminus \overline{R(f)}$ containing x. Then there exist $a, b \in C$ with $a \neq b$ such that $x \in (a,b)$, $(a,b) \cap P(f) = \emptyset$ and $f^n \notin (a,b)$ for all $n \geq 1$. Since $x \in \Omega(f), x \in \alpha(x,f)$ by Lemma 6. Without loss of generality, we may assume that $x \in \alpha_+(x,f)$. Then there exist a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ and a sequence $\{x_i\}$

of points in S^1 with $x_i \to x$ such that $f^{n_i}(x_i) = x$ for all $i \ge 1$ and $a < x < \dots < x_i < b$. Since x is a turning point of f, there exists a point $z \in (a, x)$ such that $f(z) = f(x_i)$ for sufficiently large i. Hence $x = f^{n_i}(x_i) = f^{n_i}(z) > z$. By Lemma 4,

$$[x, x_i]$$
 f^{n_i} - covers $[a, x]$

and

$$[z,x]$$
 f^{n_i} - covers $[x,b]$.

In particular, $[x, x_i]$ f^{n_i} - covers [z, x] and [z, x] f^{n_i} - covers $[x, x_i]$. Therefore $[x, x_i]$ f^{n_i} -covers itself. Hence f has a periodic point in (a, b), a contradiction. The proof is completed.

PROPOSITION 8. Suppose that f is a continuous map of the circle S^1 to itself. Then $\Lambda(\overline{R(f)}) \subset \Lambda(\Omega(f)) \subset \Gamma(f)$.

PROPOSITION 9. Let f be a continuous map of the circle S^1 to itself. If R(f) is closed, then R(f) = AP(f). Thus $AP(f) = R(f) = \Gamma(f) = \overline{R(f)}$.

Proof. We know that $AP(f) \subset R(f)$ by Proposition 5. Hence we show that $R(f) \subset AP(f)$. Let $x \in R(f)$. Then $x \in \omega(x, f)$. We show that $\omega(x, f)$ is minimal. Let y be arbitrary point in $\omega(x, f)$. Then there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to y$. Suppose that z is any point in $\omega(x, f)$. Then there exists a sequence $\{m_i\}$ of positive integers with $m_i \to \infty$ such that $f^{m_i}(y) \to z$. Therefore $f^{m_i+n_i}(x) \to z$. Hence $z \in \omega(x, f)$. Thus $\omega(x, f) \supset \omega(y, f)$. Since y is arbitrary point in $\omega(x, f)$, it suffices to show that $y \in \omega(y, f)$. Since $x \in R(f)$, $y \in \omega(x, f) \subset \Lambda(R(f)) \subset \overline{R(f)}$. By Proposition 8, $y \in \Gamma(f)$. Since R(f) is closed, $y \in R(f)$. Therefore $y \in \omega(y, f)$. Hence $\omega(x, f) \subset \omega(y, f)$. Therefore $\omega(x, f)$ is minimal. By Lemma 3, $x \in AP(f)$. Therefore $R(f) \subset AP(f)$. The proof is completed. \square

LEMMA 10. [2] Suppose that f is a continuous map of the circle S^1 to itself, and $P(f) \neq \emptyset$. Then $\overline{P(f)} = \overline{R(f)}$.

THEOREM 11. Suppose that f is a continuous map of the circle S^1 to itself and $P(f) \neq \emptyset$. Then R(f) is closed if and only if AP(f) is closed.

<u>Proof.</u> Suppose that AP(f) is closed. Then we know $AP(f) = \overline{P(f)}$. By Lemma 10, we have $AP(f) = \overline{R(f)}$. Also by Proposition 5, $AP(f) = R(f) = \overline{R(f)}$. Therefore R(f) is closed. Assume that R(f) is closed. Then R(f) = AP(f) by Proposition 9. Therefore AP(f) is closed. The proof is completed. □

References

- 1. J.S.Bae, S.H.Cho and S.K.Yang, Relations between nonwandering points and turning points on the circle, Bull. Korean Math. Soc. **32** (1995), 57-66.
- 2. J.S.Bae and S.K.Yang, $\overline{P} = \overline{R}$ for maps of the circle, Bull. Korean. Math. Soc. **24** (1988), 151-157.
- 3. J.S.Bae, S.H.Cho, K.J.Min and S.K.Yang, Attracting centre of a map on the circle, preprint.
- 4. J.C. Xiong, Sets of almostic periodic points of continuous self-maps of the interval, preprint.
- 5. Z. Nitecki, Periodic and limit orbits and the depth of the center for a piecewise monotone interval maps, Proc. Amer. Math. Soc. 80 (1980), 511-514.
- 6. J.S.Bae, S.H.Cho, K.J. min and S.K.Yang, Non-wandering points of a map on the circle, J.Korean. Math. Soc. 33 (1996), 1115-1121.
- L. Block, E. Coven, I. Mulver and Z. Nitecki, Homoclinic and nonwandering points for maps of the circle, Ergodic Theory & Dynamical Systems 3 (1983), 521-532.

Department of Mathematics Hanseo University Chungnam, 356-820,KOREA

Department of Mathematics Myongji University Yongin, 449-728, KOREA