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ALMOST PERIODIC POINTS
FOR MAPS OF THE CIRCLE

Sung Hoon Cho and Kyung Jin Min

Abstract. In this paper, we show that for any continuous map f

of the circle S1 to itself, (1) if x ∈ Ω(f) \ R(f), then x is not a

turning point of f and (2) if P (f) is non-empty, then R(f) is closed
if and only if AP (f) is closed.

1. Introduction

Let X be a compact metric space, S1 the unit circle and I the unit
closed interval. Suppose that f is a continuous map of X to itself. For
any positive integer n, we define f1 = f and fn+1 = f ◦ fn. Let f0

be the identity map of X. Let AP (f), P (f), R(f),Γ(f),Λ(f) and Ω(f)
denote the set of almost periodic points, periodic points, recurrent
points, γ-limit points, ω-limit points and nonwandering points of f ,
respectively.

In 1980, Z. Nitecki [5] proved that for any piecewise monotone map
f of the closed interval I to itself, if x ∈ Ω(f) \ R(f), then fn(x) is
not a turning point of f for any n ≥ 0. And J.C. Xiong [4] proved
that for any continuous map f of the closed interval I itself, R(f) is
closed if and only if AP (f) is closed. L. Block, E. Coven, I. Mulvey
and Z. Nitecki[7] proved that if f is a continuous map of the circle S1

to itself such that P (f) is closed and non-empty, then P (f) = Ω(f).
Also, J.S.Bae, S.H.Cho, K.J.Min and S.K. Yang[6] proved that for any
continuous map f of the circle if P (f) is empty, then R(f) = Ω(f).

In this paper, we show that for any continuous map f of the circle
S1 to itself, (1) if x ∈ Ω(f) \ R(f), then x is not a turning point of f
and (2) if P (f) is non-empty, then R(f) is closed if and only if AP (f)
is closed.
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2. Preliminaries and Definitions

Suppose that f is a continuous map of the circle S1 to itself. Let
R be the set of real number and Z be the set of integer. Formally, we
think of the circle S1 as R \ Z. Let π : R → R \ Z be the canonical
projection. In fact, the map π : R → S1 is a covering map. We say that
a continuous map F from R into itself is a lifting of f if f ◦ π = π ◦F .
We use the following notations in this paper. Let a, b ∈ S1 with a 6= b,
and let A ∈ π−1(a), B ∈ π−1(b) with |A−B| < 1 and A < B. Then we
write π((A,B)), π([A,B]), π([A,B)) and π((A,B]) to denote the open,
closed and half-open arcs from a counterclockwise to b, respectively,
and we denote it by (a, b), [a, b], [a, b) and (a, b]. For x, y ∈ [a, b] with
a 6= b. let X ∈ π−1(x), Y ∈ π−1(y) with X, Y ∈ [A,B], then we
define x > y if and only if X > Y . In particular, for a, b, c ∈ S1, a <
b < c means that b ∈ (a, c). Define a metric d on the circle S1 by
d(π(X), π(Y )) = |X − Y |, where X, Y ∈ R and |X − Y | < 1

2 . Then d

is a well-defined metric on S1 which is equivalent to the original one.
For the convenience, we use this metric d on S1.

Let f be a continuous map of the circle S1 to itself. A point x ∈ S1 is
a periodic point of f provided that for some positive integer n, fn(x) =
x. The period of x is the least such integer n. We denote the set of
periodic point of f by P (f).

A point x ∈ S1 is a recurrent point of f provided that there exists a
sequence {ni} of positive integers with ni →∞ such that fni(x) → x.
We denote the set of recurrent points of f by R(f).

A point x ∈ S1 is called a nonwandering point of f provided that
for every neighborhood U of x, there exists a positive integer m such
that fm(U)

⋂
U 6= ∅. We denote the set of nonwandering points of f

by Ω(f).
A point y ∈ S1 is called an ω-limit point of x ∈ S1 provided that

there exists a sequence {ni} of positive integers with ni →∞ such that
fni(x) → y. We denote the set of ω-limit points of x by ω(x, f). We
define Λ(f) =

⋃
x∈S1 ω(x, f) and Λ(A) =

⋃
x∈A ω(x, f) for any subset

A ⊂ S1. Note that Λ(A) ⊂ Λ(B) for subsets A,B of S1 with A ⊂ B.
A point y ∈ S1 is called an α -limit point of x ∈ S1 if there exist

a sequence {ni} of positive integers with ni →∞ and a sequence {yi}
of points in S1 with yi → y such that fni(yi) = x for all i ≥ 1. We
denote the set of α -limit points of x by α(x, f).
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A point y ∈ S1 is called an γ-limit point of x ∈ S1 provided that
y ∈ ω(x, f)

⋂
α(x, f). We denote the set of α-limit points of x by

γ(x, f) and Γ(f) =
⋃

x∈S1 γ(x, f).
Now, we define α+(x, f) and α−(x, f) as follows : y ∈ α+(x, f)

(resp., y ∈ α−(x, f)) provided that there exist a sequence {ni} of
positive integer with ni →∞ and a sequence {yi} of points in S1 with
yi → y such that fni(yi) = x for all i ≥ 1 and y < · · · < yi+1 < yi <
· · · < y2 < y1 (resp., y1 < y2 < · · · < yi < yi+1 < y ). It is easy to
show that if x /∈ P (f), then α(x, f) = α+(x, f)

⋃
α−(x, f).

A point x ∈ S1 is called a turning point of f if f is not local
homeomorphism at x.

A point x is almostic periodic point of f provided that for any ε > 0
one can find an integer n > 0 with the following property that for any
integer q > 0 there exists an integer r with q ≤ r < q + n such that
d(fr(x), x) < ε, where d is the metric of S1.

3. Main Results

The following lemmas appear in [1].

Lemma 1. [1] Suppose that f is a continuous map of the circle S1

to itself. Then

P (f) ⊂ R(f) ⊂ Γ(f) ⊂ R(f) ⊂ Λ(f) ⊂ Ω(f).

Lemma 2. [1] Let f ∈ C0(S1, S1) and J = [a, b] be an arc for some
a, b ∈ S1 with a 6= b, and let J ∩ P (f) = ∅.

(a) Suppose that there exists x ∈ J such that f(x) ∈ J and x < f(x).
Then

(1) if y ∈ J, x < y and f(y) /∈ [y, b], then [x, y] f -covers [f(x), b],
(2) if y ∈ J, x > y and f(y) /∈ [y, b], then [y, x] f -covers [f(x), b].

(b) Suppose that there exists x ∈ J such that f(x) ∈ J and x > f(x).
Then

(1) if y ∈ J, x < y and f(y) /∈ [a, y], then [x, y] f -covers [a, f(x)],
(2) if y ∈ J, y < x and f(y) /∈ [a, y], then [y, x] f -covers [a, f(x)].

The following lemma appears in [4].
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Lemma 3. [4] Suppose that f is a continuous map of the circle S1

to itself. Then x ∈ AP (f) if and only if x ∈ ω(x, y) and ω(x, f) is
minimal.

Proposition 4. Suppose that f is a continuous map of the circle
S1 to itself. Then

P (f) ⊂ AP (f) ⊂ R(f).

Proof. By Lemma 3, AP (f) ⊂ R(f). If P (f) = ∅, then obvi-
ously, P (f) ⊂ AP (f). Suppose that P (f) 6= ∅. Let x ∈ P (f) and
n be the period of x. Then x ∈ ω(x, f) and fn(x) = x. Let y be
any point in ω(x, f). Then there exists a sequence {ni} of positive
integers with ni → ∞ such that fni(x) → y. Since fn(fni(x)) =
fn+ni(x) = fni+n(x) = fni(fn(x)) = fni(x) for all positive integers
i, fni(x) → fn(y). Therefore y ∈ P (f) and y ∈ R(f) by Lemma
1. Hence y ∈ ω(y, f). Therefore ω(x, f) ⊂ ω(y, f). We show that
ω(y, f) ⊂ ω(x, f). Let z ∈ ω(y, f). Then there exists a sequence
{mi} of positive integer with mi → ∞ such that fmi → z. Since
y ∈ ω(x, f) and fni(x) → y, fmi+ni(x) → z. Hence z ∈ ω(x, f). Thus
ω(y, f) ⊂ ω(x, f). Therefore ω(x, f) is a minimal set. Hence we have
x ∈ AP (f) by Lemma 3. The proof is completed. �

By combining Lemma 1 and Proposition 4, we have the following
proposition.

Proposition 5. Suppose that f is a continuous map of the circle S1

to itself. Then P (f) ⊂ AP (f) ⊂ R(f) ⊂ Γ(f) ⊂ R(f) ⊂ Λ(f) ⊂ Ω(f).

Lemma 6. [1] Suppose that f is a continuous map of the circle S1

to itself. Then x ∈ Ω(f) if and only if x ∈ α(x, f).

Theorem 7. Let f be a continuous map of the circle S1 to itself.
If x ∈ Ω(f) \R(f), then x is a not turning point of f .

Proof. Suppose x is a turning point of f . Let C be a connected
component of S1 \ R(f) containing x. Then there exist a, b ∈ C with
a 6= b such that x ∈ (a, b), (a, b)

⋂
P (f) = ∅ and fn /∈ (a, b) for

all n ≥ 1. Since x ∈ Ω(f), x ∈ α(x, f) by Lemma 6. Without loss
of generality, we may assume that x ∈ α+(x, f). Then there exist a
sequence {ni} of positive integers with ni → ∞ and a sequence {xi}
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of points in S1 with xi → x such that fni(xi) = x for all i ≥ 1 and
a < x < · · · < xi < b. Since x is a turning point of f , there exists a
point z ∈ (a, x) such that f(z) = f(xi) for sufficiently large i. Hence
x = fni(xi) = fni(z) > z. By Lemma 4,

[x, xi] fni- covers [a, x]

and
[z, x] fni- covers [x, b].

In particular, [x, xi] fni- covers [z, x] and [z, x] fni- covers [x, xi].
Therefore [x, xi] fni-covers itself. Hence f has a periodic point in
(a, b),a contradiction. The proof is completed. �

Proposition 8. Suppose that f is a continuous map of the circle
S1 to itself. Then Λ(R(f)) ⊂ Λ(Ω(f)) ⊂ Γ(f).

Proposition 9. Let f be a continuous map of the circle S1 to itself.
If R(f) is closed, then R(f) = AP (f). Thus AP (f) = R(f) = Γ(f) =
R(f).

Proof. We know that AP (f) ⊂ R(f) by Proposition 5. Hence we
show that R(f) ⊂ AP (f). Let x ∈ R(f). Then x ∈ ω(x, f). We show
that ω(x, f) is minimal. Let y be arbitrary point in ω(x, f). Then
there exists a sequence {ni} of positive integers with ni →∞ such that
fni(x) → y. Suppose that z is any point in ω(x, f). Then there exists a
sequence {mi} of positive integers with mi →∞ such that fmi(y) → z.
Therefore fmi+ni(x) → z. Hence z ∈ ω(x, f). Thus ω(x, f) ⊃ ω(y, f).
Since y is arbitrary point in ω(x, f), it suffices to show that y ∈ ω(y, f).
Since x ∈ R(f), y ∈ ω(x, f) ⊂ Λ(R(f)) ⊂ R(f)). By Proposition 8,
y ∈ Γ(f). Since R(f) is closed, y ∈ R(f). Therefore y ∈ ω(y, f).
Hence ω(x, f) ⊂ ω(y, f). Therefore ω(x, f) is minimal. By Lemma 3,
x ∈ AP (f). Therefore R(f) ⊂ AP (f). The proof is completed. �

Lemma 10. [2] Suppose that f is a continuous map of the circle S1

to itself, and P (f) 6= ∅. Then P (f) = R(f).

Theorem 11. Suppose that f is a continuous map of the circle S1

to itself and P (f) 6= ∅. Then R(f) is closed if and only if AP (f) is
closed.
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Proof. Suppose that AP (f) is closed. Then we know AP (f) =
P (f). By Lemma 10, we have AP (f) = R(f). Also by Proposition 5,
AP (f) = R(f) = R(f). Therefore R(f) is closed. Assume that R(f)
is closed. Then R(f) = AP (f) by Proposition 9. Therefore AP (f) is
closed. The proof is completed. �
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